1
JEE Main 2022 (Online) 28th July Evening Shift
+4
-1

The function $$f(x)=x \mathrm{e}^{x(1-x)}, x \in \mathbb{R}$$, is :

A
increasing in $$\left(-\frac{1}{2}, 1\right)$$
B
decreasing in $$\left(\frac{1}{2}, 2\right)$$
C
increasing in $$\left(-1,-\frac{1}{2}\right)$$
D
decreasing in $$\left(-\frac{1}{2}, \frac{1}{2}\right)$$
2
JEE Main 2022 (Online) 28th July Morning Shift
+4
-1

If the minimum value of $$f(x)=\frac{5 x^{2}}{2}+\frac{\alpha}{x^{5}}, x>0$$, is 14 , then the value of $$\alpha$$ is equal to :

A
32
B
64
C
128
D
256
3
JEE Main 2022 (Online) 26th July Evening Shift
+4
-1

If the maximum value of $$a$$, for which the function $$f_{a}(x)=\tan ^{-1} 2 x-3 a x+7$$ is non-decreasing in $$\left(-\frac{\pi}{6}, \frac{\pi}{6}\right)$$, is $$\bar{a}$$, then $$f_{\bar{a}}\left(\frac{\pi}{8}\right)$$ is equal to :

A
$$8-\frac{9 \pi}{4\left(9+\pi^{2}\right)}$$
B
$$8-\frac{4 \pi}{9\left(4+\pi^{2}\right)}$$
C
$$8\left(\frac{1+\pi^{2}}{9+\pi^{2}}\right)$$
D
$$8-\frac{\pi}{4}$$
4
JEE Main 2022 (Online) 25th July Morning Shift
+4
-1

If the absolute maximum value of the function $$f(x)=\left(x^{2}-2 x+7\right) \mathrm{e}^{\left(4 x^{3}-12 x^{2}-180 x+31\right)}$$ in the interval $$[-3,0]$$ is $$f(\alpha)$$, then :

A
$$\alpha=0$$
B
$$\alpha=-3$$
C
$$\alpha \in(-1,0)$$
D
$$\alpha \in(-3,-1]$$
EXAM MAP
Medical
NEET