1
JEE Main 2025 (Online) 22nd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $f(x)=\int_0^{x^2} \frac{\mathrm{t}^2-8 \mathrm{t}+15}{\mathrm{e}^{\mathrm{t}}} \mathrm{dt}, x \in \mathbf{R}$. Then the numbers of local maximum and local minimum points of $f$, respectively, are :

A
3 and 2
B
2 and 2
C
2 and 3
D
1 and 3
2
JEE Main 2024 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the function $$f(x)=2 x^3-9 \mathrm{ax}^2+12 \mathrm{a}^2 x+1, \mathrm{a}> 0$$ has a local maximum at $$x=\alpha$$ and a local minimum at $$x=\alpha^2$$, then $$\alpha$$ and $$\alpha^2$$ are the roots of the equation :

A
$$x^2-6 x+8=0$$
B
$$8 x^2-6 x+1=0$$
C
$$8 x^2+6 x-1=0$$
D
$$x^2+6 x+8=0$$
3
JEE Main 2024 (Online) 8th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f(x)=4 \cos ^3 x+3 \sqrt{3} \cos ^2 x-10$$. The number of points of local maxima of $$f$$ in interval $$(0,2 \pi)$$ is

A
1
B
3
C
4
D
2
4
JEE Main 2024 (Online) 8th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The number of critical points of the function $$f(x)=(x-2)^{2 / 3}(2 x+1)$$ is

A
2
B
1
C
0
D
3
JEE Main Subjects
EXAM MAP