1
AIEEE 2009
+4
-1
Given $$P\left( x \right) = {x^4} + a{x^3} + b{x^2} + cx + d$$ such that $$x=0$$ is the only
real root of $$P'\,\left( x \right) = 0.$$ If $$P\left( { - 1} \right) < P\left( 1 \right),$$ then in the interval $$\left[ { - 1,1} \right]:$$
A
$$P(-1)$$ is not minimum but $$P(1)$$ is the maximum of $$P$$
B
$$P(-1)$$ is the minimum but $$P(1)$$ is not the maximum of $$P$$
C
Neither $$P(-1)$$ is the minimum nor $$P(1)$$ is the maximum of $$P$$
D
$$P(-1)$$ is the minimum and $$P(1)$$ is the maximum of $$P$$
2
AIEEE 2008
+4
-1
How many real solutions does the equation
$${x^7} + 14{x^5} + 16{x^3} + 30x - 560 = 0$$ have?
A
$$7$$
B
$$1$$
C
$$3$$
D
$$5$$
3
AIEEE 2008
+4
-1
Suppose the cubic $${x^3} - px + q$$ has three distinct real roots
where $$p>0$$ and $$q>0$$. Then which one of the following holds?
A
The cubic has minima at $$\sqrt {{p \over 3}}$$ and maxima at $$-\sqrt {{p \over 3}}$$
B
The cubic has minima at $$-\sqrt {{p \over 3}}$$ and maxima at $$\sqrt {{p \over 3}}$$
C
The cubic has minima at both $$\sqrt {{p \over 3}}$$ and $$-\sqrt {{p \over 3}}$$
D
The cubic has maxima at both $$\sqrt {{p \over 3}}$$ and $$-\sqrt {{p \over 3}}$$
4
AIEEE 2007
+4
-1
The function $$f\left( x \right) = {\tan ^{ - 1}}\left( {\sin x + \cos x} \right)$$ is an incresing function in
A
$$\left( {0,{\pi \over 2}} \right)$$
B
$$\left( { - {\pi \over 2},{\pi \over 2}} \right)$$
C
$$\left( { {\pi \over 4},{\pi \over 2}} \right)$$
D
$$\left( { - {\pi \over 2},{\pi \over 4}} \right)$$
EXAM MAP
Medical
NEET