1
AIEEE 2009
MCQ (Single Correct Answer)
+4
-1
Given $$P\left( x \right) = {x^4} + a{x^3} + b{x^2} + cx + d$$ such that $$x=0$$ is the only
real root of $$P'\,\left( x \right) = 0.$$ If $$P\left( { - 1} \right) < P\left( 1 \right),$$ then in the interval $$\left[ { - 1,1} \right]:$$
A
$$P(-1)$$ is not minimum but $$P(1)$$ is the maximum of $$P$$
B
$$P(-1)$$ is the minimum but $$P(1)$$ is not the maximum of $$P$$
C
Neither $$P(-1)$$ is the minimum nor $$P(1)$$ is the maximum of $$P$$
D
$$P(-1)$$ is the minimum and $$P(1)$$ is the maximum of $$P$$
2
AIEEE 2008
MCQ (Single Correct Answer)
+4
-1
Suppose the cubic $${x^3} - px + q$$ has three distinct real roots
where $$p>0$$ and $$q>0$$. Then which one of the following holds?
A
The cubic has minima at $$\sqrt {{p \over 3}} $$ and maxima at $$-\sqrt {{p \over 3}} $$
B
The cubic has minima at $$-\sqrt {{p \over 3}} $$ and maxima at $$\sqrt {{p \over 3}} $$
C
The cubic has minima at both $$\sqrt {{p \over 3}} $$ and $$-\sqrt {{p \over 3}} $$
D
The cubic has maxima at both $$\sqrt {{p \over 3}} $$ and $$-\sqrt {{p \over 3}} $$
3
AIEEE 2008
MCQ (Single Correct Answer)
+4
-1
How many real solutions does the equation
$${x^7} + 14{x^5} + 16{x^3} + 30x - 560 = 0$$ have?
A
$$7$$
B
$$1$$
C
$$3$$
D
$$5$$
4
AIEEE 2007
MCQ (Single Correct Answer)
+4
-1
If $$p$$ and $$q$$ are positive real numbers such that $${p^2} + {q^2} = 1$$, then the maximum value of $$(p+q)$$ is
A
$${1 \over 2}$$
B
$${1 \over {\sqrt 2 }}$$
C
$${\sqrt 2 }$$
D
$$2$$
JEE Main Subjects
EXAM MAP