1
JEE Main 2024 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f: \rightarrow \mathbb{R} \rightarrow(0, \infty)$$ be strictly increasing function such that $$\lim _\limits{x \rightarrow \infty} \frac{f(7 x)}{f(x)}=1$$. Then, the value of $$\lim _\limits{x \rightarrow \infty}\left[\frac{f(5 x)}{f(x)}-1\right]$$ is equal to

A
0
B
4
C
1
D
7/5
2
JEE Main 2024 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the function $$f:(-\infty,-1] \rightarrow(a, b]$$ defined by $$f(x)=e^{x^3-3 x+1}$$ is one - one and onto, then the distance of the point $$P(2 b+4, a+2)$$ from the line $$x+e^{-3} y=4$$ is :

A
$$2 \sqrt{1+e^6}$$
B
$$\sqrt{1+e^6}$$
C
$$3 \sqrt{1+e^6}$$
D
$$4 \sqrt{1+e^6}$$
3
JEE Main 2024 (Online) 31st January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\text { If } f(x)=\left|\begin{array}{ccc} x^3 & 2 x^2+1 & 1+3 x \\ 3 x^2+2 & 2 x & x^3+6 \\ x^3-x & 4 & x^2-2 \end{array}\right| \text { for all } x \in \mathbb{R} \text {, then } 2 f(0)+f^{\prime}(0) \text { is equal to }$$

A
24
B
18
C
42
D
48
4
JEE Main 2024 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f(x)=(x+3)^2(x-2)^3, x \in[-4,4]$$. If $$M$$ and $$m$$ are the maximum and minimum values of $$f$$, respectively in $$[-4,4]$$, then the value of $$M-m$$ is

A
108
B
392
C
608
D
600
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12