1
AIEEE 2010
MCQ (Single Correct Answer)
+4
-1
Let $$f:R \to R$$ be defined by $$$f\left( x \right) = \left\{ {\matrix{ {k - 2x,\,\,if} & {x \le - 1} \cr {2x + 3,\,\,if} & {x > - 1} \cr } } \right.$$$

If $$f$$has a local minimum at $$x=-1$$, then a possible value of $$k$$ is

A
$$0$$
B
$$ - {1 \over 2}$$
C
$$-1$$
D
$$1$$
2
AIEEE 2010
MCQ (Single Correct Answer)
+4
-1
Let $$f:R \to R$$ be a continuous function defined by $$$f\left( x \right) = {1 \over {{e^x} + 2{e^{ - x}}}}$$$

Statement - 1 : $$f\left( c \right) = {1 \over 3},$$ for some $$c \in R$$.

Statement - 2 : $$0 < f\left( x \right) \le {1 \over {2\sqrt 2 }},$$ for all $$x \in R$$

A
Statement - 1 is true, Statement -2 is true; Statement - 2 is not a correct explanation for Statement - 1.
B
Statement - 1 is true, Statement - 2 is false.
C
Statement - 1 is false, Statement - 2 is true.
D
Statement - 1 is true, Statement -2 is true; Statement -2 is a correct explanation for Statement - 1.
3
AIEEE 2010
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
The equation of the tangent to the curve $$y = x + {4 \over {{x^2}}}$$, that
is parallel to the $$x$$-axis, is
A
$$y=1$$
B
$$y=2$$
C
$$y=3$$
D
$$y=0$$
4
AIEEE 2009
MCQ (Single Correct Answer)
+4
-1
Given $$P\left( x \right) = {x^4} + a{x^3} + b{x^2} + cx + d$$ such that $$x=0$$ is the only
real root of $$P'\,\left( x \right) = 0.$$ If $$P\left( { - 1} \right) < P\left( 1 \right),$$ then in the interval $$\left[ { - 1,1} \right]:$$
A
$$P(-1)$$ is not minimum but $$P(1)$$ is the maximum of $$P$$
B
$$P(-1)$$ is the minimum but $$P(1)$$ is not the maximum of $$P$$
C
Neither $$P(-1)$$ is the minimum nor $$P(1)$$ is the maximum of $$P$$
D
$$P(-1)$$ is the minimum and $$P(1)$$ is the maximum of $$P$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12