1
AIEEE 2010
MCQ (Single Correct Answer)
+4
-1
Let $$f:R \to R$$ be defined by $$f\left( x \right) = \left\{ {\matrix{ {k - 2x,\,\,if} & {x \le - 1} \cr {2x + 3,\,\,if} & {x > - 1} \cr } } \right.$$$If $$f$$has a local minimum at $$x=-1$$, then a possible value of $$k$$ is A $$0$$ B $$- {1 \over 2}$$ C $$-1$$ D $$1$$ 2 AIEEE 2010 MCQ (Single Correct Answer) +4 -1 Out of Syllabus The equation of the tangent to the curve $$y = x + {4 \over {{x^2}}}$$, that is parallel to the $$x$$-axis, is A $$y=1$$ B $$y=2$$ C $$y=3$$ D $$y=0$$ 3 AIEEE 2010 MCQ (Single Correct Answer) +4 -1 Let $$f:R \to R$$ be a continuous function defined by $$f\left( x \right) = {1 \over {{e^x} + 2{e^{ - x}}}}$$$

Statement - 1 : $$f\left( c \right) = {1 \over 3},$$ for some $$c \in R$$.

Statement - 2 : $$0 < f\left( x \right) \le {1 \over {2\sqrt 2 }},$$ for all $$x \in R$$

A
Statement - 1 is true, Statement -2 is true; Statement - 2 is not a correct explanation for Statement - 1.
B
Statement - 1 is true, Statement - 2 is false.
C
Statement - 1 is false, Statement - 2 is true.
D
Statement - 1 is true, Statement -2 is true; Statement -2 is a correct explanation for Statement - 1.
4
AIEEE 2009
MCQ (Single Correct Answer)
+4
-1
Given $$P\left( x \right) = {x^4} + a{x^3} + b{x^2} + cx + d$$ such that $$x=0$$ is the only
real root of $$P'\,\left( x \right) = 0.$$ If $$P\left( { - 1} \right) < P\left( 1 \right),$$ then in the interval $$\left[ { - 1,1} \right]:$$
A
$$P(-1)$$ is not minimum but $$P(1)$$ is the maximum of $$P$$
B
$$P(-1)$$ is the minimum but $$P(1)$$ is not the maximum of $$P$$
C
Neither $$P(-1)$$ is the minimum nor $$P(1)$$ is the maximum of $$P$$
D
$$P(-1)$$ is the minimum and $$P(1)$$ is the maximum of $$P$$
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12
Â© ExamGOAL 2024