1
JEE Main 2021 (Online) 25th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$f(x) = 3{\sin ^4}x + 10{\sin ^3}x + 6{\sin ^2}x - 3$$, $$x \in \left[ { - {\pi \over 6},{\pi \over 2}} \right]$$. Then, f is :
A
increasing in $$\left( { - {\pi \over 6},{\pi \over 2}} \right)$$
B
decreasing in $$\left( {0,{\pi \over 2}} \right)$$
C
increasing in $$\left( { - {\pi \over 6},0} \right)$$
D
decreasing in $$\left( { - {\pi \over 6},0} \right)$$
2
JEE Main 2021 (Online) 22th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f : R $$\to$$ R be defined as

$$f(x) = \left\{ {\matrix{ { - {4 \over 3}{x^3} + 2{x^2} + 3x,} & {x > 0} \cr {3x{e^x},} & {x \le 0} \cr } } \right.$$. Then f is increasing function in the interval
A
$$\left( { - {1 \over 2},2} \right)$$
B
(0,2)
C
$$\left( { - 1,{3 \over 2}} \right)$$
D
($$-$$3, $$-$$1)
3
JEE Main 2021 (Online) 20th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The sum of all the local minimum values of the twice differentiable function f : R $$\to$$ R defined by $$f(x) = {x^3} - 3{x^2} - {{3f''(2)} \over 2}x + f''(1)$$ is :
A
$$-$$22
B
5
C
$$-$$27
D
0
4
JEE Main 2021 (Online) 20th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$A = [{a_{ij}}]$$ be a 3 $$\times$$ 3 matrix, where $${a_{ij}} = \left\{ {\matrix{ 1 & , & {if\,i = j} \cr { - x} & , & {if\,\left| {i - j} \right| = 1} \cr {2x + 1} & , & {otherwise.} \cr } } \right.$$

Let a function f : R $$\to$$ R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to:
A
$$ - {{20} \over {27}}$$
B
$${{88} \over {27}}$$
C
$${{20} \over {27}}$$
D
$$ - {{88} \over {27}}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12