1
JEE Main 2021 (Online) 27th August Morning Shift
MCQ (Single Correct Answer)
+4
-1
A wire of length 20 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a regular hexagon. Then the length of the side (in meters) of the hexagon, so that the combined area of the square and the hexagon is minimum, is :
A
$${5 \over {2 + \sqrt 3 }}$$
B
$${{10} \over {2 + 3\sqrt 3 }}$$
C
$${5 \over {3 + \sqrt 3 }}$$
D
$${{10} \over {3 + 2\sqrt 3 }}$$
2
JEE Main 2021 (Online) 20th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Let 'a' be a real number such that the function f(x) = ax2 + 6x $$-$$ 15, x $$\in$$ R is increasing in $$\left( { - \infty ,{3 \over 4}} \right)$$ and decreasing in $$\left( {{3 \over 4},\infty } \right)$$. Then the function g(x) = ax2 $$-$$ 6x + 15, x$$\in$$R has a :
A
local maximum at x = $$-$$ $${{3 \over 4}}$$
B
local minimum at x = $$-$$$${{3 \over 4}}$$
C
local maximum at x = $${{3 \over 4}}$$
D
local minimum at x = $${{3 \over 4}}$$
3
JEE Main 2021 (Online) 16th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
The maximum value of

$$f(x) = \left| {\matrix{ {{{\sin }^2}x} & {1 + {{\cos }^2}x} & {\cos 2x} \cr {1 + {{\sin }^2}x} & {{{\cos }^2}x} & {\cos 2x} \cr {{{\sin }^2}x} & {{{\cos }^2}x} & {\sin 2x} \cr } } \right|,x \in R$$ is :
A
$$\sqrt 5 $$
B
$${3 \over 4}$$
C
5
D
$$\sqrt 7 $$
4
JEE Main 2021 (Online) 26th February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Let A1 be the area of the region bounded by the curves y = sinx, y = cosx and y-axis in the first quadrant. Also, let A2 be the area of the region bounded by the curves y = sinx, y = cosx, x-axis and x = $${\pi \over 2}$$ in the first quadrant. Then,
A
$${A_1}:{A_2} = 1:\sqrt 2 $$ and $${A_1} + {A_2} = 1$$
B
$${A_1} = {A_2}$$ and $${A_1} + {A_2} = \sqrt 2 $$
C
$$2{A_1} = {A_2}$$ and $${A_1} + {A_2} = 1 + \sqrt 2 $$
D
$${A_1}:{A_2} = 1:2$$ and $${A_1} + {A_2} = 1$$
JEE Main Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEE
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Medical
NEET