1
JEE Main 2022 (Online) 28th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the minimum value of $$f(x)=\frac{5 x^{2}}{2}+\frac{\alpha}{x^{5}}, x>0$$, is 14 , then the value of $$\alpha$$ is equal to :

A
32
B
64
C
128
D
256
2
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the maximum value of $$a$$, for which the function $$f_{a}(x)=\tan ^{-1} 2 x-3 a x+7$$ is non-decreasing in $$\left(-\frac{\pi}{6}, \frac{\pi}{6}\right)$$, is $$\bar{a}$$, then $$f_{\bar{a}}\left(\frac{\pi}{8}\right)$$ is equal to :

A
$$ 8-\frac{9 \pi}{4\left(9+\pi^{2}\right)} $$
B
$$8-\frac{4 \pi}{9\left(4+\pi^{2}\right)}$$
C
$$8\left(\frac{1+\pi^{2}}{9+\pi^{2}}\right)$$
D
$$8-\frac{\pi}{4}$$
3
JEE Main 2022 (Online) 25th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the absolute maximum value of the function $$f(x)=\left(x^{2}-2 x+7\right) \mathrm{e}^{\left(4 x^{3}-12 x^{2}-180 x+31\right)}$$ in the interval $$[-3,0]$$ is $$f(\alpha)$$, then :

A
$$\alpha=0$$
B
$$ \alpha=-3$$
C
$$\alpha \in(-1,0)$$
D
$$\alpha \in(-3,-1]$$
4
JEE Main 2022 (Online) 25th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The curve $$y(x)=a x^{3}+b x^{2}+c x+5$$ touches the $$x$$-axis at the point $$\mathrm{P}(-2,0)$$ and cuts the $$y$$-axis at the point $$Q$$, where $$y^{\prime}$$ is equal to 3 . Then the local maximum value of $$y(x)$$ is:

A
$$\frac{27}{4}$$
B
$$\frac{29}{4}$$
C
$$\frac{37}{4}$$
D
$$\frac{9}{2}$$
JEE Main Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12