1
JEE Main 2022 (Online) 26th June Morning Shift
+4
-1 The sum of the absolute minimum and the absolute maximum values of the

function f(x) = |3x $$-$$ x2 + 2| $$-$$ x in the interval [$$-$$1, 2] is :

A
$${{\sqrt {17} + 3} \over 2}$$
B
$${{\sqrt {17} + 5} \over 2}$$
C
5
D
$${{9 - \sqrt {17} } \over 2}$$
2
JEE Main 2022 (Online) 26th June Morning Shift
+4
-1 Let S be the set of all the natural numbers, for which the line $${x \over a} + {y \over b} = 2$$ is a tangent to the curve $${\left( {{x \over a}} \right)^n} + {\left( {{y \over b}} \right)^n} = 2$$ at the point (a, b), ab $$\ne$$ 0. Then :

A
S = $$\phi$$
B
n(S) = 1
C
S = {2k : k $$\in$$ N}
D
S = N
3
JEE Main 2022 (Online) 25th June Evening Shift
+4
-1 Water is being filled at the rate of 1 cm3 / sec in a right circular conical vessel (vertex downwards) of height 35 cm and diameter 14 cm. When the height of the water level is 10 cm, the rate (in cm2 / sec) at which the wet conical surface area of the vessel increases is

A
5
B
$${{\sqrt {21} } \over 5}$$
C
$${{\sqrt {26} } \over 5}$$
D
$${{\sqrt {26} } \over {10}}$$
4
JEE Main 2022 (Online) 25th June Evening Shift
+4
-1 If the angle made by the tangent at the point (x0, y0) on the curve $$x = 12(t + \sin t\cos t)$$, $$y = 12{(1 + \sin t)^2}$$, $$0 < t < {\pi \over 2}$$, with the positive x-axis is $${\pi \over 3}$$, then y0 is equal to:

A
$$6\left( {3 + 2\sqrt 2 } \right)$$
B
$$3\left( {7 + 4\sqrt 3 } \right)$$
C
27
D
48
JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination