Consider the function $$f:\left[\frac{1}{2}, 1\right] \rightarrow \mathbb{R}$$ defined by $$f(x)=4 \sqrt{2} x^3-3 \sqrt{2} x-1$$. Consider the statements
(I) The curve $$y=f(x)$$ intersects the $$x$$-axis exactly at one point.
(II) The curve $$y=f(x)$$ intersects the $$x$$-axis at $$x=\cos \frac{\pi}{12}$$.
Then
Let $$g(x)=3 f\left(\frac{x}{3}\right)+f(3-x)$$ and $$f^{\prime \prime}(x)>0$$ for all $$x \in(0,3)$$. If $$g$$ is decreasing in $$(0, \alpha)$$ and increasing in $$(\alpha, 3)$$, then $$8 \alpha$$ is :
$$\max _\limits{0 \leq x \leq \pi}\left\{x-2 \sin x \cos x+\frac{1}{3} \sin 3 x\right\}=$$
If the local maximum value of the function $$f(x)=\left(\frac{\sqrt{3 e}}{2 \sin x}\right)^{\sin ^{2} x}, x \in\left(0, \frac{\pi}{2}\right)$$ , is $$\frac{k}{e}$$, then $$\left(\frac{k}{e}\right)^{8}+\frac{k^{8}}{e^{5}}+k^{8}$$ is equal to