1
JEE Main 2024 (Online) 29th January Morning Shift
+4
-1

Consider the function $$f:\left[\frac{1}{2}, 1\right] \rightarrow \mathbb{R}$$ defined by $$f(x)=4 \sqrt{2} x^3-3 \sqrt{2} x-1$$. Consider the statements

(I) The curve $$y=f(x)$$ intersects the $$x$$-axis exactly at one point.

(II) The curve $$y=f(x)$$ intersects the $$x$$-axis at $$x=\cos \frac{\pi}{12}$$.

Then

A
Both (I) and (II) are correct.
B
Only (I) is correct.
C
Both (I) and (II) are incorrect.
D
Only (II) is correct.
2
JEE Main 2024 (Online) 27th January Evening Shift
+4
-1

Let $$g(x)=3 f\left(\frac{x}{3}\right)+f(3-x)$$ and $$f^{\prime \prime}(x)>0$$ for all $$x \in(0,3)$$. If $$g$$ is decreasing in $$(0, \alpha)$$ and increasing in $$(\alpha, 3)$$, then $$8 \alpha$$ is :

A
0
B
24
C
18
D
20
3
JEE Main 2023 (Online) 13th April Morning Shift
+4
-1

$$\max _\limits{0 \leq x \leq \pi}\left\{x-2 \sin x \cos x+\frac{1}{3} \sin 3 x\right\}=$$

A
$$\frac{5 \pi+2+3 \sqrt{3}}{6}$$
B
0
C
$$\frac{\pi+2-3 \sqrt{3}}{6}$$
D
$$\pi$$
4
JEE Main 2023 (Online) 12th April Morning Shift
+4
-1

If the local maximum value of the function $$f(x)=\left(\frac{\sqrt{3 e}}{2 \sin x}\right)^{\sin ^{2} x}, x \in\left(0, \frac{\pi}{2}\right)$$ , is $$\frac{k}{e}$$, then $$\left(\frac{k}{e}\right)^{8}+\frac{k^{8}}{e^{5}}+k^{8}$$ is equal to

A
$$e^{3}+e^{6}+e^{10}$$
B
$$e^{3}+e^{5}+e^{11}$$
C
$$e^{3}+e^{6}+e^{11}$$
D
$$e^{5}+e^{6}+e^{11}$$
EXAM MAP
Medical
NEET