Let $$f(x)=x^5+2 x^3+3 x+1, x \in \mathbf{R}$$, and $$g(x)$$ be a function such that $$g(f(x))=x$$ for all $$x \in \mathbf{R}$$. Then $$\frac{g(7)}{g^{\prime}(7)}$$ is equal to :
For the function
$$f(x)=\sin x+3 x-\frac{2}{\pi}\left(x^2+x\right), \text { where } x \in\left[0, \frac{\pi}{2}\right],$$
consider the following two statements :
(I) $$f$$ is increasing in $$\left(0, \frac{\pi}{2}\right)$$.
(II) $$f^{\prime}$$ is decreasing in $$\left(0, \frac{\pi}{2}\right)$$.
Between the above two statements,
Let $$f(x)=3 \sqrt{x-2}+\sqrt{4-x}$$ be a real valued function. If $$\alpha$$ and $$\beta$$ are respectively the minimum and the maximum values of $$f$$, then $$\alpha^2+2 \beta^2$$ is equal to
Let the sum of the maximum and the minimum values of the function $$f(x)=\frac{2 x^2-3 x+8}{2 x^2+3 x+8}$$ be $$\frac{m}{n}$$, where $$\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$$. Then $$\mathrm{m}+\mathrm{n}$$ is equal to :