Let $$f(x) = 2{\cos ^{ - 1}}x + 4{\cot ^{ - 1}}x - 3{x^2} - 2x + 10$$, $$x \in [ - 1,1]$$. If [a, b] is the range of the function f, then 4a $$-$$ b is equal to :
Water is being filled at the rate of 1 cm3 / sec in a right circular conical vessel (vertex downwards) of height 35 cm and diameter 14 cm. When the height of the water level is 10 cm, the rate (in cm2 / sec) at which the wet conical surface area of the vessel increases is
If the angle made by the tangent at the point (x0, y0) on the curve $$x = 12(t + \sin t\cos t)$$, $$y = 12{(1 + \sin t)^2}$$, $$0 < t < {\pi \over 2}$$, with the positive x-axis is $${\pi \over 3}$$, then y0 is equal to:
The slope of normal at any point (x, y), x > 0, y > 0 on the curve y = y(x) is given by $${{{x^2}} \over {xy - {x^2}{y^2} - 1}}$$. If the curve passes through the point (1, 1), then e . y(e) is equal to