Let $ A = \begin{bmatrix} 2 & 2+p & 2+p+q \\ 4 & 6+2p & 8+3p+2q \\ 6 & 12+3p & 20+6p+3q \end{bmatrix} $.
If $ \det(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n $, $ m, n \in \mathbb{N} $, then $ m + n $ is equal to
Let the system of equations
x + 5y - z = 1
4x + 3y - 3z = 7
24x + y + λz = μ
λ, μ ∈ ℝ, have infinitely many solutions. Then the number of the solutions of this system,
if x, y, z are integers and satisfy 7 ≤ x + y + z ≤ 77, is :
Let $A$ be a $3 \times 3$ matrix such that $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} \mathrm{A}))|=81$.
If $S=\left\{n \in \mathbb{Z}:(|\operatorname{adj}(\operatorname{adj} A)|)^{\frac{(n-1)^2}{2}}=|A|^{\left(3 n^2-5 n-4\right)}\right\}$, then $\sum_\limits{n \in S}\left|A^{\left(n^2+n\right)}\right|$ is equal to :
Let the system of equations :
$$ \begin{aligned} & 2 x+3 y+5 z=9 \\ & 7 x+3 y-2 z=8 \\ & 12 x+3 y-(4+\lambda) z=16-\mu \end{aligned}$$
have infinitely many solutions. Then the radius of the circle centred at $(\lambda, \mu)$ and touching the line $4 x=3 y$ is :