1
JEE Main 2020 (Online) 8th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
If c is a point at which Rolle's theorem holds for the function,
f(x) = $${\log _e}\left( {{{{x^2} + \alpha } \over {7x}}} \right)$$ in the interval [3, 4], where a $$ \in $$ R, then ƒ''(c) is equal to
A
$${1 \over {12}}$$
B
$${{\sqrt 3 } \over 7}$$
C
$$-{1 \over {12}}$$
D
$$-{1 \over {24}}$$
2
JEE Main 2020 (Online) 7th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let ƒ(x) be a polynomial of degree 5 such that x = ±1 are its critical points.

If $$\mathop {\lim }\limits_{x \to 0} \left( {2 + {{f\left( x \right)} \over {{x^3}}}} \right) = 4$$, then which one of the following is not true?
A
ƒ(1) - 4ƒ(-1) = 4.
B
x = 1 is a point of minima and x = -1 is a point of maxima of ƒ.
C
x = 1 is a point of maxima and x = -1 is a point of minimum of ƒ.
D
ƒ is an odd function.
3
JEE Main 2020 (Online) 7th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
The value of c in the Lagrange's mean value theorem for the function
ƒ(x) = x3 - 4x2 + 8x + 11, when x $$ \in $$ [0, 1] is:
A
$${2 \over 3}$$
B
$${{\sqrt 7 - 2} \over 3}$$
C
$${{4 - \sqrt 5 } \over 3}$$
D
$${{4 - \sqrt 7 } \over 3}$$
4
JEE Main 2020 (Online) 7th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
Let the function, ƒ:[-7, 0]$$ \to $$R be continuous on [-7,0] and differentiable on (-7, 0). If ƒ(-7) = - 3 and ƒ'(x) $$ \le $$ 2, for all x $$ \in $$ (-7,0), then for all such functions ƒ, ƒ(-1) + ƒ(0) lies in the interval:
A
$$\left[ { - 6,20} \right]$$
B
$$\left( { - \infty ,\left. {20} \right]} \right.$$
C
$$\left[ { - 3,11} \right]$$
D
$$\left( { - \infty ,\left. {11} \right]} \right.$$
JEE Main Subjects
EXAM MAP