1
AIEEE 2010
+4
-1
Consider the system of linear equations; $$\matrix{ {{x_1} + 2{x_2} + {x_3} = 3} \cr {2{x_1} + 3{x_2} + {x_3} = 3} \cr {3{x_1} + 5{x_2} + 2{x_3} = 1} \cr }$$\$
The system has :
A
exactly $$3$$ solutions
B
a unique solution
C
no solution
D
infinitenumber of solutions
2
AIEEE 2010
+4
-1
The number of $$3 \times 3$$ non-singular matrices, with four entries as $$1$$ and all other entries as $$0$$, is :
A
$$5$$
B
$$6$$
C
at least $$7$$
D
less than $$4$$
3
AIEEE 2009
+4
-1
Out of Syllabus
Let $$A$$ be a $$\,2 \times 2$$ matrix
Statement - 1 : $$adj\left( {adj\,A} \right) = A$$
Statement - 2 :$$\left| {adj\,A} \right| = \left| A \right|$$
A
statement - 1 is true, statement - 2 is true; statement - 2 is not a correct explanation for statement - 1.
B
statement - 1 is true, statement - 2 is false.
C
statement - 1 is false, statement -2 is true
D
statement -1 is true, statement - 2 is true; statement - 2 is a correct explanation for statement - 1.
4
AIEEE 2009
+4
-1
Let $$a, b, c$$ be such that $$b\left( {a + c} \right) \ne 0$$ if

$$\left| {\matrix{ a & {a + 1} & {a - 1} \cr { - b} & {b + 1} & {b - 1} \cr c & {c - 1} & {c + 1} \cr } } \right| + \left| {\matrix{ {a + 1} & {b + 1} & {c - 1} \cr {a - 1} & {b - 1} & {c + 1} \cr {{{\left( { - 1} \right)}^{n + 2}}a} & {{{\left( { - 1} \right)}^{n + 1}}b} & {{{\left( { - 1} \right)}^n}c} \cr } } \right| = 0$$

then the value of $$n$$ :

A
any even integer
B
any odd integer
C
any integer
D
zero
EXAM MAP
Medical
NEET