1
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
A line is drawn through the point $$(1, 2)$$ to meet the coordinate axes at $$P$$ and $$Q$$ such that it forms a triangle $$OPQ,$$ where $$O$$ is the origin. If the area of the triangle $$OPQ$$ is least, then the slope of the line $$PQ$$ is :
A
$$-{1 \over 4}$$
B
$$-4$$
C
$$-2$$
D
$$-{1 \over 2}$$
2
AIEEE 2011
MCQ (Single Correct Answer)
+4
-1
For $$x \in \left( {0,{{5\pi } \over 2}} \right),$$ define $$f\left( x \right) = \int\limits_0^x {\sqrt t \sin t\,dt.} $$ Then $$f$$ has
A
local minimum at $$\pi $$ and $$2\pi $$
B
local minimum at $$\pi $$ and local maximum at $$2\pi $$
C
local maximum at $$\pi $$ and local minimum at $$2\pi $$
D
local maximum at $$\pi $$ and $$2\pi $$
3
AIEEE 2011
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
The shortest distance between line $$y-x=1$$ and curve $$x = {y^2}$$ is
A
$${{3\sqrt 2 } \over 8}$$
B
$${8 \over {3\sqrt 2 }}$$
C
$${4 \over {\sqrt 3 }}$$
D
$${{\sqrt 3 } \over 4}$$
4
AIEEE 2010
MCQ (Single Correct Answer)
+4
-1
Let $$f:R \to R$$ be defined by $$$f\left( x \right) = \left\{ {\matrix{ {k - 2x,\,\,if} & {x \le - 1} \cr {2x + 3,\,\,if} & {x > - 1} \cr } } \right.$$$

If $$f$$has a local minimum at $$x=-1$$, then a possible value of $$k$$ is

A
$$0$$
B
$$ - {1 \over 2}$$
C
$$-1$$
D
$$1$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12