1
JEE Main 2020 (Online) 4th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The function
$$f(x) = \left\{ {\matrix{ {{\pi \over 4} + {{\tan }^{ - 1}}x,} & {\left| x \right| \le 1} \cr {{1 \over 2}\left( {\left| x \right| - 1} \right),} & {\left| x \right| > 1} \cr } } \right.$$ is :
A
continuous on R–{–1} and differentiable on R–{–1, 1}
B
both continuous and differentiable on R–{1}
C
both continuous and differentiable on R–{–1}
D
continuous on R–{1} and differentiable on R–{–1, 1}
2
JEE Main 2020 (Online) 4th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$f:\left( {0,\infty } \right) \to \left( {0,\infty } \right)$$ be a differentiable function such that f(1) = e and
$$\mathop {\lim }\limits_{t \to x} {{{t^2}{f^2}(x) - {x^2}{f^2}(t)} \over {t - x}} = 0$$. If f(x) = 1, then x is equal to :
A
$${1 \over e}$$
B
e
C
$${1 \over 2e}$$
D
2e
3
JEE Main 2020 (Online) 3rd September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
$$\mathop {\lim }\limits_{x \to a} {{{{\left( {a + 2x} \right)}^{{1 \over 3}}} - {{\left( {3x} \right)}^{{1 \over 3}}}} \over {{{\left( {3a + x} \right)}^{{1 \over 3}}} - {{\left( {4x} \right)}^{{1 \over 3}}}}}$$ ($$a$$ $$ \ne $$ 0) is equal to :
A
$$\left( {{2 \over 9}} \right){\left( {{2 \over 3}} \right)^{{1 \over 3}}}$$
B
$$\left( {{2 \over 3}} \right){\left( {{2 \over 9}} \right)^{{1 \over 3}}}$$
C
$${\left( {{2 \over 3}} \right)^{{4 \over 3}}}$$
D
$${\left( {{2 \over 9}} \right)^{{4 \over 3}}}$$
4
JEE Main 2020 (Online) 3rd September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let [t] denote the greatest integer $$ \le $$ t. If for some
$$\lambda $$ $$ \in $$ R - {1, 0}, $$\mathop {\lim }\limits_{x \to 0} \left| {{{1 - x + \left| x \right|} \over {\lambda - x + \left[ x \right]}}} \right|$$ = L, then L is equal to :
A
1
B
2
C
0
D
$${1 \over 2}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12