$\lim _\limits{x \rightarrow 0^{+}} \frac{\tan \left(5(x)^{\frac{1}{3}}\right) \log _e\left(1+3 x^2\right)}{\left(\tan ^{-1} 3 \sqrt{x}\right)^2\left(e^{5(x)^{\frac{4}{3}}}-1\right)}$ is equal to
Let $f$ be a differentiable function on $\mathbf{R}$ such that $f(2)=1, f^{\prime}(2)=4$. Let $\lim \limits_{x \rightarrow 0}(f(2+x))^{3 / x}=\mathrm{e}^\alpha$. Then the number of times the curve $y=4 x^3-4 x^2-4(\alpha-7) x-\alpha$ meets $x$-axis is :
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying $f(0)=1$ and $f(2 x)-f(x)=x$ for all $x \in \mathbb{R}$. If $\lim _\limits{n \rightarrow \infty}\left\{f(x)-f\left(\frac{x}{2^n}\right)\right\}=G(x)$, then $\sum_\limits{r=1}^{10} G\left(r^2\right)$ is equal to
If $\lim _\limits{x \rightarrow 1^{+}} \frac{(x-1)(6+\lambda \cos (x-1))+\mu \sin (1-x)}{(x-1)^3}=-1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda+\mu$ is equal to