$\lim _\limits{x \rightarrow 0} \operatorname{cosec} x\left(\sqrt{2 \cos ^2 x+3 \cos x}-\sqrt{\cos ^2 x+\sin x+4}\right)$ is:
Let $f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$ be a function such that $f(x)-6 f\left(\frac{1}{x}\right)=\frac{35}{3 x}-\frac{5}{2}$. If the $\lim\limits _{x \rightarrow 0}\left(\frac{1}{\alpha x}+f(x)\right)=\beta ; \alpha, \beta \in \mathbb{R}$, then $\alpha+2 \beta$ is equal to
$\lim \limits_{x \rightarrow \infty} \frac{\left(2 x^2-3 x+5\right)(3 x-1)^{\frac{x}{2}}}{\left(3 x^2+5 x+4\right) \sqrt{(3 x+2)^x}}$ is equal to :
If the function
$$
f(x)=\left\{\begin{array}{l}
\frac{2}{x}\left\{\sin \left(k_1+1\right) x+\sin \left(k_2-1\right) x\right\}, \quad x<0 \\
4, \quad x=0 \\
\frac{2}{x} \log _e\left(\frac{2+k_1 x}{2+k_2 x}\right), \quad x>0
\end{array}\right.
$$
is continuous at $x=0$, then $k_1^2+k_2^2$ is equal to :