Let f : R $$\to$$ R be defined as
$$f(x) = \left[ {\matrix{ {[{e^x}],} & {x < 0} \cr {a{e^x} + [x - 1],} & {0 \le x < 1} \cr {b + [\sin (\pi x)],} & {1 \le x < 2} \cr {[{e^{ - x}}] - c,} & {x \ge 2} \cr } } \right.$$
where a, b, c $$\in$$ R and [t] denotes greatest integer less than or equal to t. Then, which of the following statements is true?
Let a be an integer such that $$\mathop {\lim }\limits_{x \to 7} {{18 - [1 - x]} \over {[x - 3a]}}$$ exists, where [t] is greatest integer $$\le$$ t. Then a is equal to :
$$\mathop {\lim }\limits_{x \to 0} {{\cos (\sin x) - \cos x} \over {{x^4}}}$$ is equal to :
Let f(x) = min {1, 1 + x sin x}, 0 $$\le$$ x $$\le$$ 2$$\pi $$. If m is the number of points, where f is not differentiable and n is the number of points, where f is not continuous, then the ordered pair (m, n) is equal to