1
JEE Main 2023 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$a_{1}, a_{2}, a_{3}, \ldots, a_{\mathrm{n}}$$ be $$\mathrm{n}$$ positive consecutive terms of an arithmetic progression. If $$\mathrm{d} > 0$$ is its common difference, then

$$\lim_\limits{n \rightarrow \infty} \sqrt{\frac{d}{n}}\left(\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\ldots \ldots \ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}\right)$$ is

A
$$\frac{1}{\sqrt{d}}$$
B
1
C
0
D
$$\sqrt{d}$$
2
JEE Main 2023 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
$$ \lim\limits_{x \rightarrow \infty} \frac{(\sqrt{3 x+1}+\sqrt{3 x-1})^6+(\sqrt{3 x+1}-\sqrt{3 x-1})^6}{\left(x+\sqrt{x^2-1}\right)^6+\left(x-\sqrt{x^2-1}\right)^6} x^3 $$
A
is equal to 9
B
is equal to $\frac{27}{2}$
C
does not exist
D
is equal to 27
3
JEE Main 2023 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $f, g$ and $h$ be the real valued functions defined on $\mathbb{R}$ as

$f(x)=\left\{\begin{array}{cc}\frac{x}{|x|}, & x \neq 0 \\ 1, & x=0\end{array}\right.$

$g(x)=\left\{\begin{array}{cc}\frac{\sin (x+1)}{(x+1)}, & x \neq-1 \\ 1, & x=-1\end{array}\right.$

and $h(x)=2[x]-f(x)$, where $[x]$ is the greatest integer $\leq x$. Then the

value of $\lim\limits_{x \rightarrow 1} g(h(x-1))$ is :
A
1
B
$-1$
C
$\sin (1)$
D
0
4
JEE Main 2023 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Suppose $$f: \mathbb{R} \rightarrow(0, \infty)$$ be a differentiable function such that $$5 f(x+y)=f(x) \cdot f(y), \forall x, y \in \mathbb{R}$$. If $$f(3)=320$$, then $$\sum_\limits{n=0}^{5} f(n)$$ is equal to :

A
6875
B
6525
C
6575
D
6825
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12