1
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Let $$f(x) = {{1 - \tan x} \over {4x - \pi }}$$, $$x \ne {\pi \over 4}$$, $$x \in \left[ {0,{\pi \over 2}} \right]$$.

If $$f(x)$$ is continuous in $$\left[ {0,{\pi \over 2}} \right]$$, then $$f\left( {{\pi \over 4}} \right)$$ is
A
$$-1$$
B
$${1 \over 2}$$
C
$$-{1 \over 2}$$
D
$$1$$
2
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
If $$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + {a \over x} + {b \over {{x^2}}}} \right)^{2x}} = {e^2}$$, then the value of $$a$$ and $$b$$, are
A
$$a$$ = 1 and $$b$$ = 2
B
$$a$$ = 1 and $$b$$ $$ \in R$$
C
$$a$$ $$ \in R$$ and $$b$$ = 2
D
$$a$$ $$ \in R$$ and $$b$$ $$ \in R$$
3
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
If $$\mathop {\lim }\limits_{x \to 0} {{\log \left( {3 + x} \right) - \log \left( {3 - x} \right)} \over x}$$ = k, the value of k is
A
$$ - {2 \over 3}$$
B
0
C
$$ - {1 \over 3}$$
D
$${2 \over 3}$$
4
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Let $$f(a) = g(a) = k$$ and their nth derivatives
$${f^n}(a)$$, $${g^n}(a)$$ exist and are not equal for some n. Further if

$$\mathop {\lim }\limits_{x \to a} {{f(a)g(x) - f(a) - g(a)f(x) + f(a)} \over {g(x) - f(x)}} = 4$$

then the value of k is
A
0
B
4
C
2
D
1
JEE Main Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12