1
JEE Main 2021 (Online) 20th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let a function f : R $$\to$$ R be defined as $$f(x) = \left\{ {\matrix{ {\sin x - {e^x}} & {if} & {x \le 0} \cr {a + [ - x]} & {if} & {0 < x < 1} \cr {2x - b} & {if} & {x \ge 1} \cr } } \right.$$

where [ x ] is the greatest integer less than or equal to x. If f is continuous on R, then (a + b) is equal to:
A
4
B
3
C
2
D
5
2
JEE Main 2021 (Online) 18th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f : R $$ \to $$ R be a function defined as

$$f(x) = \left\{ \matrix{ {{\sin (a + 1)x + \sin 2x} \over {2x}},if\,x < 0 \hfill \cr b,\,if\,x\, = 0 \hfill \cr {{\sqrt {x + b{x^3}} - \sqrt x } \over {b{x^{5/2}}}},\,if\,x > 0 \hfill \cr} \right.$$

If f is continuous at x = 0, then the value of a + b is equal to :
A
$$-$$3
B
$$-$$2
C
$$ - {5 \over 2}$$
D
$$ - {3 \over 2}$$
3
JEE Main 2021 (Online) 18th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\mathop {\lim }\limits_{x \to 0} {{{{\sin }^{ - 1}}x - {{\tan }^{ - 1}}x} \over {3{x^3}}}$$ is equal to L, then the value of (6L + 1) is
A
$${1 \over 6}$$
B
$${1 \over 2}$$
C
6
D
2
4
JEE Main 2021 (Online) 18th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$f(x) = \left\{ {\matrix{ {{1 \over {|x|}}} & {;\,|x|\, \ge 1} \cr {a{x^2} + b} & {;\,|x|\, < 1} \cr } } \right.$$ is differentiable at every point of the domain, then the values of a and b are respectively :
A
$${1 \over 2},{1 \over 2}$$
B
$${1 \over 2}, - {3 \over 2}$$
C
$${5 \over 2}, - {3 \over 2}$$
D
$$ - {1 \over 2},{3 \over 2}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12