1
JEE Main 2020 (Online) 8th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
$$\mathop {\lim }\limits_{x \to 0} {\left( {{{3{x^2} + 2} \over {7{x^2} + 2}}} \right)^{{1 \over {{x^2}}}}}$$ is equal to
A
e
B
e2
C
$${1 \over {{e^2}}}$$
D
$${1 \over e}$$
2
JEE Main 2019 (Online) 12th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
$$\mathop {\lim }\limits_{x \to 0} {{x + 2\sin x} \over {\sqrt {{x^2} + 2\sin x + 1} - \sqrt {{{\sin }^2}x - x + 1} }}$$ is :
A
6
B
1
C
3
D
2
3
JEE Main 2019 (Online) 12th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f(x) = 5 – |x – 2| and g(x) = |x + 1|, x $$ \in $$ R. If f(x) attains maximum value at $$\alpha $$ and g(x) attains minimum value at $$\beta $$, then $$\mathop {\lim }\limits_{x \to -\alpha \beta } {{\left( {x - 1} \right)\left( {{x^2} - 5x + 6} \right)} \over {{x^2} - 6x + 8}}$$ is equal to :
A
$${1 \over 2}$$
B
$$-{1 \over 2}$$
C
$${3 \over 2}$$
D
$$-{3 \over 2}$$
4
JEE Main 2019 (Online) 12th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\alpha $$ and $$\beta $$ are the roots of the equation 375x2 – 25x – 2 = 0, then $$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {{\alpha ^r}} + \mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {{\beta ^r}} $$ is equal to :
A
$${7 \over {116}}$$
B
$${{29} \over {348}}$$
C
$${1 \over {12}}$$
D
$${{21} \over {346}}$$
JEE Main Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12