Let $$x=2$$ be a root of the equation $$x^2+px+q=0$$ and $$f(x) = \left\{ {\matrix{ {{{1 - \cos ({x^2} - 4px + {q^2} + 8q + 16)} \over {{{(x - 2p)}^4}}},} & {x \ne 2p} \cr {0,} & {x = 2p} \cr } } \right.$$
Then $$\mathop {\lim }\limits_{x \to 2{p^ + }} [f(x)]$$, where $$\left[ . \right]$$ denotes greatest integer function, is
If the function $$f(x) = \left\{ {\matrix{ {(1 + |\cos x|)^{\lambda \over {|\cos x|}}} & , & {0 < x < {\pi \over 2}} \cr \mu & , & {x = {\pi \over 2}} \cr e^{{{\cot 6x} \over {{}\cot 4x}}} & , & {{\pi \over 2} < x < \pi } \cr } } \right.$$
is continuous at $$x = {\pi \over 2}$$, then $$9\lambda + 6{\log _e}\mu + {\mu ^6} - {e^{6\lambda }}$$ is equal to
The value of $$\mathop {\lim }\limits_{n \to \infty } {{1 + 2 - 3 + 4 + 5 - 6\, + \,.....\, + \,(3n - 2) + (3n - 1) - 3n} \over {\sqrt {2{n^4} + 4n + 3} - \sqrt {{n^4} + 5n + 4} }}$$ is :
The set of all values of $$a$$ for which $$\mathop {\lim }\limits_{x \to a} ([x - 5] - [2x + 2]) = 0$$, where [$$\alpha$$] denotes the greatest integer less than or equal to $$\alpha$$ is equal to