1
JEE Main 2021 (Online) 27th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$f:\left( { - {\pi \over 4},{\pi \over 4}} \right) \to R$$ be defined as $$f(x) = \left\{ {\matrix{ {{{(1 + |\sin x|)}^{{{3a} \over {|\sin x|}}}}} & , & { - {\pi \over 4} < x < 0} \cr b & , & {x = 0} \cr {{e^{\cot 4x/\cot 2x}}} & , & {0 < x < {\pi \over 4}} \cr } } \right.$$

If f is continuous at x = 0, then the value of 6a + b2 is equal to :
A
1 $$-$$ e
B
e $$-$$ 1
C
1 + e
D
e
2
JEE Main 2021 (Online) 27th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f : R $$\to$$ R be a function such that f(2) = 4 and f'(2) = 1. Then, the value of $$\mathop {\lim }\limits_{x \to 2} {{{x^2}f(2) - 4f(x)} \over {x - 2}}$$ is equal to :
A
4
B
8
C
16
D
12
3
JEE Main 2021 (Online) 25th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f : R $$\to$$ R be defined as

$$f(x) = \left\{ {\matrix{ {{{\lambda \left| {{x^2} - 5x + 6} \right|} \over {\mu (5x - {x^2} - 6)}},} & {x < 2} \cr {{e^{{{\tan (x - 2)} \over {x - [x]}}}},} & {x > 2} \cr {\mu ,} & {x = 2} \cr } } \right.$$

where [x] is the greatest integer is than or equal to x. If f is continuous at x = 2, then $$\lambda$$ + $$\mu$$ is equal to :
A
e($$-$$e + 1)
B
e(e $$-$$ 2)
C
1
D
2e $$-$$ 1
4
JEE Main 2021 (Online) 22th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f : R $$\to$$ R be defined as $$f(x) = \left\{ {\matrix{ {{{{x^3}} \over {{{(1 - \cos 2x)}^2}}}{{\log }_e}\left( {{{1 + 2x{e^{ - 2x}}} \over {{{(1 - x{e^{ - x}})}^2}}}} \right),} & {x \ne 0} \cr {\alpha ,} & {x = 0} \cr } } \right.$$

If f is continuous at x = 0, then $$\alpha$$ is equal to :
A
1
B
3
C
0
D
2
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12