1
JEE Main 2022 (Online) 25th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let f(x) be a polynomial function such that $$f(x) + f'(x) + f''(x) = {x^5} + 64$$. Then, the value of $$\mathop {\lim }\limits_{x \to 1} {{f(x)} \over {x - 1}}$$ is equal to:

A
$$-$$15
B
$$-$$60
C
60
D
15
2
JEE Main 2022 (Online) 24th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f(x) = \left\{ {\matrix{ {{{\sin (x - [x])} \over {x - [x]}}} & {,\,x \in ( - 2, - 1)} \cr {\max \{ 2x,3[|x|]\} } & {,\,|x| < 1} \cr 1 & {,\,otherwise} \cr } } \right.$$

where [t] denotes greatest integer $$\le$$ t. If m is the number of points where $$f$$ is not continuous and n is the number of points where $$f$$ is not differentiable, then the ordered pair (m, n) is :

A
(3, 3)
B
(2, 4)
C
(2, 3)
D
(3, 4)
3
JEE Main 2021 (Online) 31st August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\alpha = \mathop {\lim }\limits_{x \to {\pi \over 4}} {{{{\tan }^3}x - \tan x} \over {\cos \left( {x + {\pi \over 4}} \right)}}$$ and $$\beta = \mathop {\lim }\limits_{x \to 0 } {(\cos x)^{\cot x}}$$ are the roots of the equation, ax2 + bx $$-$$ 4 = 0, then the ordered pair (a, b) is :
A
(1, $$-$$3)
B
($$-$$1, 3)
C
($$-$$1, $$-$$3)
D
(1, 3)
4
JEE Main 2021 (Online) 31st August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f be any continuous function on [0, 2] and twice differentiable on (0, 2). If f(0) = 0, f(1) = 1 and f(2) = 2, then
A
f''(x) = 0 for all x $$\in$$ (0, 2)
B
f''(x) = 0 for some x $$\in$$ (0, 2)
C
f'(x) = 0 for some x $$\in$$ [0, 2]
D
f''(x) > 0 for all x $$\in$$ (0, 2)
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12