1
JEE Main 2022 (Online) 26th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let f : R $$\to$$ R be a continuous function such that $$f(3x) - f(x) = x$$. If $$f(8) = 7$$, then $$f(14)$$ is equal to :

A
4
B
10
C
11
D
16
2
JEE Main 2022 (Online) 25th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The number of bijective functions $$f:\{1,3,5,7, \ldots, 99\} \rightarrow\{2,4,6,8, \ldots .100\}$$, such that $$f(3) \geq f(9) \geq f(15) \geq f(21) \geq \ldots . . f(99)$$, is ____________.

A
$${ }^{50} P_{17}$$
B
$${ }^{50} P_{33}$$
C
$$33 ! \times 17$$!
D
$$\frac{50!}{2}$$
3
JEE Main 2022 (Online) 25th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The total number of functions,

$$ f:\{1,2,3,4\} \rightarrow\{1,2,3,4,5,6\} $$ such that $$f(1)+f(2)=f(3)$$, is equal to :

A
60
B
90
C
108
D
126
4
JEE Main 2022 (Online) 25th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the absolute maximum value of the function $$f(x)=\left(x^{2}-2 x+7\right) \mathrm{e}^{\left(4 x^{3}-12 x^{2}-180 x+31\right)}$$ in the interval $$[-3,0]$$ is $$f(\alpha)$$, then :

A
$$\alpha=0$$
B
$$ \alpha=-3$$
C
$$\alpha \in(-1,0)$$
D
$$\alpha \in(-3,-1]$$
JEE Main Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEE
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Medical
NEET