1
JEE Main 2022 (Online) 26th July Morning Shift
+4
-1

Let f : R $$\to$$ R be a continuous function such that $$f(3x) - f(x) = x$$. If $$f(8) = 7$$, then $$f(14)$$ is equal to :

A
4
B
10
C
11
D
16
2
JEE Main 2022 (Online) 26th July Morning Shift
+4
-1

If the function $$f(x) = \left\{ {\matrix{ {{{{{\log }_e}(1 - x + {x^2}) + {{\log }_e}(1 + x + {x^2})} \over {\sec x - \cos x}}} & , & {x \in \left( {{{ - \pi } \over 2},{\pi \over 2}} \right) - \{ 0\} } \cr k & , & {x = 0} \cr } } \right.$$ is continuous at x = 0, then k is equal to:

A
1
B
$$-$$1
C
e
D
0
3
JEE Main 2022 (Online) 26th July Morning Shift
+4
-1

If $$f(x) = \left\{ {\matrix{ {x + a} & , & {x \le 0} \cr {|x - 4|} & , & {x > 0} \cr } } \right.$$ and $$g(x) = \left\{ {\matrix{ {x + 1} & , & {x < 0} \cr {{{(x - 4)}^2} + b} & , & {x \ge 0} \cr } } \right.$$ are continuous on R, then $$(gof)(2) + (fog)( - 2)$$ is equal to :

A
$$-$$10
B
10
C
8
D
$$-$$8
4
JEE Main 2022 (Online) 26th July Morning Shift
+4
-1

Let $$f(x) = \left\{ {\matrix{ {{x^3} - {x^2} + 10x - 7,} & {x \le 1} \cr { - 2x + {{\log }_2}({b^2} - 4),} & {x > 1} \cr } } \right.$$.

Then the set of all values of b, for which f(x) has maximum value at x = 1, is :

A
($$-$$6, $$-$$2)
B
(2, 6)
C
$$[ - 6, - 2) \cup (2,6]$$
D
$$\left[ {-\sqrt 6 , - 2} \right) \cup \left( {2,\sqrt 6 } \right]$$
EXAM MAP
Medical
NEET