1
AIEEE 2010
+4
-1
Let $$f:R \to R$$ be a positive increasing function with

$$\mathop {\lim }\limits_{x \to \infty } {{f(3x)} \over {f(x)}} = 1$$. Then $$\mathop {\lim }\limits_{x \to \infty } {{f(2x)} \over {f(x)}} =$$
A
$${2 \over 3}$$
B
$${3 \over 2}$$
C
3
D
1
2
AIEEE 2009
+4
-1
Let $$f\left( x \right) = x\left| x \right|$$ and $$g\left( x \right) = \sin x.$$
Statement-1: gof is differentiable at $$x=0$$ and its derivative is continuous at that point.
Statement-2: gof is twice differentiable at $$x=0$$.
A
Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
B
Statement-1 is true, Statement-2 is false
C
Statement-1 is false, Statement-2 is true
D
Statement-1 is true, Statement-2 is true Statement-2 is a correct explanation for Statement-1
3
AIEEE 2008
+4
-1
Let $$f\left( x \right) = \left\{ {\matrix{ {\left( {x - 1} \right)\sin {1 \over {x - 1}}} & {if\,x \ne 1} \cr 0 & {if\,x = 1} \cr } } \right.$$

Then which one of the following is true?
A
$$f$$ is neither differentiable at x = 0 nor at x = 1
B
$$f$$ is differentiable at x = 0 and at x = 1
C
$$f$$ is differentiable at x = 0 but not at x = 1
D
$$f$$ is differentiable at x = 1 but not at x = 0
4
AIEEE 2007
+4
-1
Let $$f:R \to R$$ be a function defined by

$$f(x) = \min \left\{ {x + 1,\left| x \right| + 1} \right\}$$, then which of the following is true?
A
$$f(x)$$ is differentiale everywhere
B
$$f(x)$$ is not differentiable at x = 0
C
$$f(x) > 1$$ for all $$x \in R$$
D
$$f(x)$$ is not differentiable at x = 1
JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination