1
JEE Main 2021 (Online) 26th February Evening Shift
+4
-1
Let f(x) be a differentiable function at x = a with f'(a) = 2 and f(a) = 4.

Then $$\mathop {\lim }\limits_{x \to a} {{xf(a) - af(x)} \over {x - a}}$$ equals :
A
4 $$-$$ 2a
B
2a + 4
C
a + 4
D
2a $$-$$ 4
2
JEE Main 2021 (Online) 26th February Evening Shift
+4
-1
Let $$f(x) = {\sin ^{ - 1}}x$$ and $$g(x) = {{{x^2} - x - 2} \over {2{x^2} - x - 6}}$$. If $$g(2) = \mathop {\lim }\limits_{x \to 2} g(x)$$, then the domain of the function fog is :
A
$$( - \infty , - 2] \cup \left[ { - {4 \over 3},\infty } \right)$$
B
$$( - \infty , - 2] \cup [ - 1,\infty )$$
C
$$( - \infty , - 2] \cup \left[ { - {3 \over 2},\infty } \right)$$
D
$$( - \infty , - 1] \cup [2,\infty )$$
3
JEE Main 2021 (Online) 26th February Evening Shift
+4
-1
Let f : R $$\to$$ R be defined as

$$f(x) = \left\{ \matrix{ 2\sin \left( { - {{\pi x} \over 2}} \right),if\,x < - 1 \hfill \cr |a{x^2} + x + b|,\,if - 1 \le x \le 1 \hfill \cr \sin (\pi x),\,if\,x > 1 \hfill \cr} \right.$$ If f(x) is continuous on R, then a + b equals :
A
$$-$$3
B
3
C
$$-$$1
D
1
4
JEE Main 2021 (Online) 26th February Morning Shift
+4
-1
The value of $$\mathop {\lim }\limits_{h \to 0} 2\left\{ {{{\sqrt 3 \sin \left( {{\pi \over 6} + h} \right) - \cos \left( {{\pi \over 6} + h} \right)} \over {\sqrt 3 h\left( {\sqrt 3 \cosh - \sinh } \right)}}} \right\}$$ is :
A
$${4 \over 3}$$
B
$${2 \over 3}$$
C
$${3 \over 4}$$
D
$${2 \over {\sqrt 3 }}$$
EXAM MAP
Medical
NEET