1
JEE Main 2023 (Online) 11th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f(x)=\left[x^{2}-x\right]+|-x+[x]|$$, where $$x \in \mathbb{R}$$ and $$[t]$$ denotes the greatest integer less than or equal to $$t$$. Then, $$f$$ is :

A
continuous at $$x=0$$, but not continuous at $$x=1$$
B
continuous at $$x=0$$ and $$x=1$$
C
continuous at $$x=1$$, but not continuous at $$x=0$$
D
not continuous at $$x=0$$ and $$x=1$$
2
JEE Main 2023 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$\alpha > \beta > 0$$ are the roots of the equation $$a x^{2}+b x+1=0$$, and $$\lim_\limits{x \rightarrow \frac{1}{\alpha}}\left(\frac{1-\cos \left(x^{2}+b x+a\right)}{2(1-\alpha x)^{2}}\right)^{\frac{1}{2}}=\frac{1}{k}\left(\frac{1}{\beta}-\frac{1}{\alpha}\right), \text { then } \mathrm{k} \text { is equal to }$$ :

A
$$2 \beta$$
B
$$\beta$$
C
$$\alpha$$
D
$$2 \alpha$$
3
JEE Main 2023 (Online) 8th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\lim_\limits{x \rightarrow 0}\left(\left(\frac{\left(1-\cos ^{2}(3 x)\right.}{\cos ^{3}(4 x)}\right)\left(\frac{\sin ^{3}(4 x)}{\left(\log _{e}(2 x+1)\right)^{5}}\right)\right)$$ is equal to _____________.

A
15
B
18
C
9
D
24
4
JEE Main 2023 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$a_{1}, a_{2}, a_{3}, \ldots, a_{\mathrm{n}}$$ be $$\mathrm{n}$$ positive consecutive terms of an arithmetic progression. If $$\mathrm{d} > 0$$ is its common difference, then

$$\lim_\limits{n \rightarrow \infty} \sqrt{\frac{d}{n}}\left(\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\ldots \ldots \ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}\right)$$ is

A
$$\frac{1}{\sqrt{d}}$$
B
1
C
0
D
$$\sqrt{d}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12