1
JEE Main 2022 (Online) 27th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If for $$\mathrm{p} \neq \mathrm{q} \neq 0$$, the function $$f(x)=\frac{\sqrt[7]{\mathrm{p}(729+x)}-3}{\sqrt[3]{729+\mathrm{q} x}-9}$$ is continuous at $$x=0$$, then :

A
$$7 p q \,f(0)-1=0$$
B
$$63 q \,f(0)-\mathrm{p}^{2}=0$$
C
$$21 q \,f(0)-\mathrm{p}^{2}=0$$
D
$$7 p q \,f(0)-9=0$$
2
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\beta=\mathop {\lim }\limits_{x \to 0} \frac{\alpha x-\left(e^{3 x}-1\right)}{\alpha x\left(e^{3 x}-1\right)}$$ for some $$\alpha \in \mathbb{R}$$. Then the value of $$\alpha+\beta$$ is :

A
$$\frac{14}{5}$$
B
$$\frac{3}{2}$$
C
$$\frac{5}{2}$$
D
$$\frac{7}{2}$$
3
JEE Main 2022 (Online) 26th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the function $$f(x) = \left\{ {\matrix{ {{{{{\log }_e}(1 - x + {x^2}) + {{\log }_e}(1 + x + {x^2})} \over {\sec x - \cos x}}} & , & {x \in \left( {{{ - \pi } \over 2},{\pi \over 2}} \right) - \{ 0\} } \cr k & , & {x = 0} \cr } } \right.$$ is continuous at x = 0, then k is equal to:

A
1
B
$$-$$1
C
e
D
0
4
JEE Main 2022 (Online) 26th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$f(x) = \left\{ {\matrix{ {x + a} & , & {x \le 0} \cr {|x - 4|} & , & {x > 0} \cr } } \right.$$ and $$g(x) = \left\{ {\matrix{ {x + 1} & , & {x < 0} \cr {{{(x - 4)}^2} + b} & , & {x \ge 0} \cr } } \right.$$ are continuous on R, then $$(gof)(2) + (fog)( - 2)$$ is equal to :

A
$$-$$10
B
10
C
8
D
$$-$$8
JEE Main Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEE
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Medical
NEET