If $$\alpha$$, $$\beta$$ are the distinct roots of x2 + bx + c = 0, then $$\mathop {\lim }\limits_{x \to \beta } {{{e^{2({x^2} + bx + c)}} - 1 - 2({x^2} + bx + c)} \over {{{(x - \beta )}^2}}}$$ is equal to :
CHECK ANSWER
Explanation $$\mathop {\lim }\limits_{x \to \beta } {{{e^{2({x^2} + bx + c)}} - 1 - 2({x^2} + bx + c)} \over {{{(x - \beta )}^2}}}$$ $$ = \mathop {\lim }\limits_{x \to \beta } {{1\left( {1 + {{2({x^2} + bx + c)} \over {1!}} + {{{2^2}{{({x^2} + bx + c)}^2}} \over {2!}} + ...} \right) - 1 - 2({x^2} + bx + c)} \over {{{(x - \beta )}^2}}}$$ $$ = \mathop {\lim }\limits_{x \to \beta } {{2{{({x^2} + bx + 1)}^2}} \over {{{(x - \beta )}^2}}}$$ $$ = \mathop {\lim }\limits_{x \to \beta } {{2{{(x - \alpha )}^2}{{(x - \beta )}^2}} \over {{{(x - \beta )}^2}}}$$ $$ = 2{(\beta - \alpha )^2} = 2({b^2} - 4c)$$