1
JEE Main 2024 (Online) 27th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Consider the function.

$$ f(x)=\left\{\begin{array}{cc} \frac{\mathrm{a}\left(7 x-12-x^2\right)}{\mathrm{b}\left|x^2-7 x+12\right|} & , x<3 \\\\ 2^{\frac{\sin (x-3)}{x-[x]}} & , x>3 \\\\ \mathrm{~b} & , x=3, \end{array}\right. $$

where $[x]$ denotes the greatest integer less than or equal to $x$. If $\mathrm{S}$ denotes the set of all ordered pairs (a, b) such that $f(x)$ is continuous at $x=3$, then the number of elements in $\mathrm{S}$ is :
A
Infinitely many
B
4
C
2
D
1
2
JEE Main 2024 (Online) 27th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $\mathrm{a}=\lim\limits_{x \rightarrow 0} \frac{\sqrt{1+\sqrt{1+x^4}}-\sqrt{2}}{x^4}$ and $\mathrm{b}=\lim\limits _{x \rightarrow 0} \frac{\sin ^2 x}{\sqrt{2}-\sqrt{1+\cos x}}$, then the value of $a b^3$ is :
A
36
B
25
C
32
D
30
3
JEE Main 2023 (Online) 15th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $[x]$ denote the greatest integer function and

$f(x)=\max \{1+x+[x], 2+x, x+2[x]\}, 0 \leq x \leq 2$. Let $m$ be the number of

points in $[0,2]$, where $f$ is not continuous and $n$ be the number of points in

$(0,2)$, where $f$ is not differentiable. Then $(m+n)^{2}+2$ is equal to :
A
3
B
6
C
2
D
11
4
JEE Main 2023 (Online) 13th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$\lim_\limits{x \rightarrow 0} \frac{e^{a x}-\cos (b x)-\frac{cx e^{-c x}}{2}}{1-\cos (2 x)}=17$$, then $$5 a^{2}+b^{2}$$ is equal to

A
64
B
68
C
72
D
76
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12