1
JEE Main 2020 (Online) 3rd September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
$$\mathop {\lim }\limits_{x \to a} {{{{\left( {a + 2x} \right)}^{{1 \over 3}}} - {{\left( {3x} \right)}^{{1 \over 3}}}} \over {{{\left( {3a + x} \right)}^{{1 \over 3}}} - {{\left( {4x} \right)}^{{1 \over 3}}}}}$$ ($$a$$ $$ \ne $$ 0) is equal to :
A
$$\left( {{2 \over 9}} \right){\left( {{2 \over 3}} \right)^{{1 \over 3}}}$$
B
$$\left( {{2 \over 3}} \right){\left( {{2 \over 9}} \right)^{{1 \over 3}}}$$
C
$${\left( {{2 \over 3}} \right)^{{4 \over 3}}}$$
D
$${\left( {{2 \over 9}} \right)^{{4 \over 3}}}$$
2
JEE Main 2020 (Online) 3rd September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let [t] denote the greatest integer $$ \le $$ t. If for some
$$\lambda $$ $$ \in $$ R - {1, 0}, $$\mathop {\lim }\limits_{x \to 0} \left| {{{1 - x + \left| x \right|} \over {\lambda - x + \left[ x \right]}}} \right|$$ = L, then L is equal to :
A
1
B
2
C
0
D
$${1 \over 2}$$
3
JEE Main 2020 (Online) 2nd September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
$$\mathop {\lim }\limits_{x \to 0} {\left( {\tan \left( {{\pi \over 4} + x} \right)} \right)^{{1 \over x}}}$$ is equal to :
A
2
B
1
C
$$e$$
D
$$e$$2
4
JEE Main 2020 (Online) 2nd September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If a function f(x) defined by

$$f\left( x \right) = \left\{ {\matrix{ {a{e^x} + b{e^{ - x}},} & { - 1 \le x < 1} \cr {c{x^2},} & {1 \le x \le 3} \cr {a{x^2} + 2cx,} & {3 < x \le 4} \cr } } \right.$$

be continuous for some $$a$$, b, c $$ \in $$ R and f'(0) + f'(2) = e, then the value of of $$a$$ is :
A
$${e \over {{e^2} - 3e - 13}}$$
B
$${1 \over {{e^2} - 3e + 13}}$$
C
$${e \over {{e^2} - 3e + 13}}$$
D
$${e \over {{e^2} + 3e + 13}}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12