1
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
If $$\mathop {\lim }\limits_{x \to 0} {{\log \left( {3 + x} \right) - \log \left( {3 - x} \right)} \over x}$$ = k, the value of k is
A
$$ - {2 \over 3}$$
B
0
C
$$ - {1 \over 3}$$
D
$${2 \over 3}$$
2
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Let $$f(a) = g(a) = k$$ and their nth derivatives
$${f^n}(a)$$, $${g^n}(a)$$ exist and are not equal for some n. Further if

$$\mathop {\lim }\limits_{x \to a} {{f(a)g(x) - f(a) - g(a)f(x) + f(a)} \over {g(x) - f(x)}} = 4$$

then the value of k is
A
0
B
4
C
2
D
1
3
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
$$\mathop {\lim }\limits_{x \to {\pi \over 2}} {{\left[ {1 - \tan \left( {{x \over 2}} \right)} \right]\left[ {1 - \sin x} \right]} \over {\left[ {1 + \tan \left( {{x \over 2}} \right)} \right]{{\left[ {\pi - 2x} \right]}^3}}}$$ is
A
$$\infty $$
B
$${1 \over 8}$$
C
0
D
$${1 \over 32}$$
4
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
If $$f(x) = \left\{ {\matrix{ {x{e^{ - \left( {{1 \over {\left| x \right|}} + {1 \over x}} \right)}}} & {,x \ne 0} \cr 0 & {,x = 0} \cr } } \right.$$

then $$f(x)$$ is
A
discontinuous everywhere
B
continuous as well as differentiable for all x
C
continuous for all x but not differentiable at x = 0
D
neither differentiable nor continuous at x = 0
JEE Main Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12