1
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
Let $$\alpha$$ and $$\beta$$ be the distinct roots of $$a{x^2} + bx + c = 0$$, then

$$\mathop {\lim }\limits_{x \to \alpha } {{1 - \cos \left( {a{x^2} + bx + c} \right)} \over {{{\left( {x - \alpha } \right)}^2}}}$$ is equal to
A
$${{{a^2}{{\left( {\alpha - \beta } \right)}^2}} \over 2}$$
B
0
C
$$ - {{{a^2}{{\left( {\alpha - \beta } \right)}^2}} \over 2}$$
D
$${{{{\left( {\alpha - \beta } \right)}^2}} \over 2}$$
2
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
Suppose $$f(x)$$ is differentiable at x = 1 and

$$\mathop {\lim }\limits_{h \to 0} {1 \over h}f\left( {1 + h} \right) = 5$$, then $$f'\left( 1 \right)$$ equals
A
3
B
4
C
5
D
6
3
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If $$f$$ is a real valued differentiable function satisfying

$$\left| {f\left( x \right) - f\left( y \right)} \right|$$ $$ \le {\left( {x - y} \right)^2}$$, $$x, y$$ $$ \in R$$
and $$f(0)$$ = 0, then $$f(1)$$ equals
A
-1
B
0
C
2
D
1
4
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Let $$f(x) = {{1 - \tan x} \over {4x - \pi }}$$, $$x \ne {\pi \over 4}$$, $$x \in \left[ {0,{\pi \over 2}} \right]$$.

If $$f(x)$$ is continuous in $$\left[ {0,{\pi \over 2}} \right]$$, then $$f\left( {{\pi \over 4}} \right)$$ is
A
$$-1$$
B
$${1 \over 2}$$
C
$$-{1 \over 2}$$
D
$$1$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12