1
JEE Main 2025 (Online) 23rd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$\lim \limits_{x \rightarrow \infty} \frac{\left(2 x^2-3 x+5\right)(3 x-1)^{\frac{x}{2}}}{\left(3 x^2+5 x+4\right) \sqrt{(3 x+2)^x}}$ is equal to :

A
$\frac{2 e}{3}$
B
$\frac{2}{3 \sqrt{\mathrm{e}}}$
C
$\frac{2 \mathrm{e}}{\sqrt{3}}$
D
$\frac{2}{\sqrt{3 \mathrm{e}}}$
2
JEE Main 2025 (Online) 23rd January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the function

$$ f(x)=\left\{\begin{array}{l} \frac{2}{x}\left\{\sin \left(k_1+1\right) x+\sin \left(k_2-1\right) x\right\}, \quad x<0 \\ 4, \quad x=0 \\ \frac{2}{x} \log _e\left(\frac{2+k_1 x}{2+k_2 x}\right), \quad x>0 \end{array}\right. $$

is continuous at $x=0$, then $k_1^2+k_2^2$ is equal to :

A
5
B
10
C
20
D
8
3
JEE Main 2025 (Online) 22nd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $\lim _\limits{x \rightarrow \infty}\left(\left(\frac{\mathrm{e}}{1-\mathrm{e}}\right)\left(\frac{1}{\mathrm{e}}-\frac{x}{1+x}\right)\right)^x=\alpha$, then the value of $\frac{\log _{\mathrm{e}} \alpha}{1+\log _{\mathrm{e}} \alpha}$ equals :

A
$e^{-2}$
B
$\mathrm{e}^2$
C
$e$
D
$e^{-1}$
4
JEE Main 2025 (Online) 22nd January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $\sum_\limits{r=1}^n T_r=\frac{(2 n-1)(2 n+1)(2 n+3)(2 n+5)}{64}$, then $\lim _\limits{n \rightarrow \infty} \sum_\limits{r=1}^n\left(\frac{1}{T_r}\right)$ is equal to :

A
$\frac{2}{3}$
B
$\frac{1}{3}$
C
1
D
0
JEE Main Subjects
EXAM MAP