1
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
$$If\,\mathop {\lim }\limits_{x \to 0} {{\cos (2x) + a\cos (4x) - b} \over {{x^4}}}is\,finite,\,then\,(a + b)\,is\,equal\,to:$$
A
0
B
$\frac{3}{4}$
C
-1
D
$\frac{1}{2}$
2
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

For $\alpha, \beta, \gamma \in \mathbf{R}$, if $\lim _\limits{x \rightarrow 0} \frac{x^2 \sin \alpha x+(\gamma-1) \mathrm{e}^{x^2}}{\sin 2 x-\beta x}=3$, then $\beta+\gamma-\alpha$ is equal to :

A
$-$1
B
4
C
6
D
7
3
JEE Main 2025 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let the function $f(x)=\left(x^2-1\right)\left|x^2-a x+2\right|+\cos |x|$ be not differentiable at the two points $x=\alpha=2$ and $x=\beta$. Then the distance of the point $(\alpha, \beta)$ from the line $12 x+5 y+10=0$ is equal to :
A

5

B

2

C
4
D

3

4
JEE Main 2025 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The value of $\lim \limits_{n \rightarrow \infty}\left(\sum\limits_{k=1}^n \frac{k^3+6 k^2+11 k+5}{(k+3)!}\right)$ is :

A

5/3

B

2

C

4/3

D

7/3

JEE Main Subjects
EXAM MAP