Let $$f(x) = \left\{ {\matrix{ {{x^2}\sin \left( {{1 \over x}} \right)} & {,\,x \ne 0} \cr 0 & {,\,x = 0} \cr } } \right.$$
Then at $$x=0$$
$$ \text { Let the function } f(x)=\left\{\begin{array}{cl} \frac{\log _{e}(1+5 x)-\log _{e}(1+\alpha x)}{x} & ;\text { if } x \neq 0 \\ 10 & ; \text { if } x=0 \end{array} \text { be continuous at } x=0 .\right. $$
Then $$\alpha$$ is equal to
If $$\lim\limits_{x \rightarrow 0} \frac{\alpha \mathrm{e}^{x}+\beta \mathrm{e}^{-x}+\gamma \sin x}{x \sin ^{2} x}=\frac{2}{3}$$, where $$\alpha, \beta, \gamma \in \mathbf{R}$$, then which of the following is NOT correct?
The number of points, where the function $$f: \mathbf{R} \rightarrow \mathbf{R}$$,
$$f(x)=|x-1| \cos |x-2| \sin |x-1|+(x-3)\left|x^{2}-5 x+4\right|$$, is NOT differentiable, is :