1
JEE Main 2022 (Online) 26th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let f, g : R $$\to$$ R be two real valued functions defined as $$f(x) = \left\{ {\matrix{ { - |x + 3|} & , & {x < 0} \cr {{e^x}} & , & {x \ge 0} \cr } } \right.$$ and $$g(x) = \left\{ {\matrix{ {{x^2} + {k_1}x} & , & {x < 0} \cr {4x + {k_2}} & , & {x \ge 0} \cr } } \right.$$, where k1 and k2 are real constants. If (gof) is differentiable at x = 0, then (gof) ($$-$$ 4) + (gof) (4) is equal to :

A
$$4({e^4} + 1)$$
B
$$2(2{e^4} + 1)$$
C
$$4{e^4}$$
D
$$2(2{e^4} - 1)$$
2
JEE Main 2022 (Online) 25th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\mathop {\lim }\limits_{x \to {\pi \over 2}} \left( {{{\tan }^2}x\left( {{{(2{{\sin }^2}x + 3\sin x + 4)}^{{1 \over 2}}} - {{({{\sin }^2}x + 6\sin x + 2)}^{{1 \over 2}}}} \right)} \right)$$ is equal to

A
$${1 \over {12}}$$
B
$$-$$$${1 \over {18}}$$
C
$$-$$$${1 \over {12}}$$
D
$${1 \over {6}}$$
3
JEE Main 2022 (Online) 25th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let f(x) be a polynomial function such that $$f(x) + f'(x) + f''(x) = {x^5} + 64$$. Then, the value of $$\mathop {\lim }\limits_{x \to 1} {{f(x)} \over {x - 1}}$$ is equal to:

A
$$-$$15
B
$$-$$60
C
60
D
15
4
JEE Main 2022 (Online) 24th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f(x) = \left\{ {\matrix{ {{{\sin (x - [x])} \over {x - [x]}}} & {,\,x \in ( - 2, - 1)} \cr {\max \{ 2x,3[|x|]\} } & {,\,|x| < 1} \cr 1 & {,\,otherwise} \cr } } \right.$$

where [t] denotes greatest integer $$\le$$ t. If m is the number of points where $$f$$ is not continuous and n is the number of points where $$f$$ is not differentiable, then the ordered pair (m, n) is :

A
(3, 3)
B
(2, 4)
C
(2, 3)
D
(3, 4)
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12