Let f, g : R $$\to$$ R be two real valued functions defined as $$f(x) = \left\{ {\matrix{ { - |x + 3|} & , & {x < 0} \cr {{e^x}} & , & {x \ge 0} \cr } } \right.$$ and $$g(x) = \left\{ {\matrix{ {{x^2} + {k_1}x} & , & {x < 0} \cr {4x + {k_2}} & , & {x \ge 0} \cr } } \right.$$, where k1 and k2 are real constants. If (gof) is differentiable at x = 0, then (gof) ($$-$$ 4) + (gof) (4) is equal to :
$$\mathop {\lim }\limits_{x \to {\pi \over 2}} \left( {{{\tan }^2}x\left( {{{(2{{\sin }^2}x + 3\sin x + 4)}^{{1 \over 2}}} - {{({{\sin }^2}x + 6\sin x + 2)}^{{1 \over 2}}}} \right)} \right)$$ is equal to
Let f(x) be a polynomial function such that $$f(x) + f'(x) + f''(x) = {x^5} + 64$$. Then, the value of $$\mathop {\lim }\limits_{x \to 1} {{f(x)} \over {x - 1}}$$ is equal to:
Let $$f(x) = \left\{ {\matrix{ {{{\sin (x - [x])} \over {x - [x]}}} & {,\,x \in ( - 2, - 1)} \cr {\max \{ 2x,3[|x|]\} } & {,\,|x| < 1} \cr 1 & {,\,otherwise} \cr } } \right.$$
where [t] denotes greatest integer $$\le$$ t. If m is the number of points where $$f$$ is not continuous and n is the number of points where $$f$$ is not differentiable, then the ordered pair (m, n) is :