1
JEE Main 2018 (Online) 15th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
$$\mathop {\lim }\limits_{x \to 0} {{x\tan 2x - 2x\tan x} \over {{{\left( {1 - \cos 2x} \right)}^2}}}$$ equals :
A
$${1 \over 4}$$
B
1
C
$${1 \over 2}$$
D
$$-$$ $${1 \over 2}$$
2
JEE Main 2018 (Online) 15th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f(x) = $$\left\{ {\matrix{ {{{\left( {x - 1} \right)}^{{1 \over {2 - x}}}},} & {x > 1,x \ne 2} \cr {k\,\,\,\,\,\,\,\,\,\,\,\,\,\,} & {,x = 2} \cr } } \right.$$

Thevaue of k for which f s continuous at x = 2 is :
A
1
B
e
C
e-1
D
e-2
3
JEE Main 2018 (Online) 15th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f(x) be a polynomial of degree $$4$$ having extreme values at $$x = 1$$ and $$x = 2.$$

If   $$\mathop {lim}\limits_{x \to 0} \left( {{{f\left( x \right)} \over {{x^2}}} + 1} \right) = 3$$   then f($$-$$1) is equal to :
A
$${9 \over 2}$$
B
$${5 \over 2}$$
C
$${3 \over 2}$$
D
$${1 \over 2}$$
4
JEE Main 2018 (Online) 15th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let S = {($$\lambda $$, $$\mu $$) $$ \in $$ R $$ \times $$ R : f(t) = (|$$\lambda $$| e|t| $$-$$ $$\mu $$). sin (2|t|), t $$ \in $$ R, is a differentiable function}. Then S is a subset of :
A
R $$ \times $$ [0, $$\infty $$)
B
[0, $$\infty $$) $$ \times $$ R
C
R $$ \times $$ ($$-$$ $$\infty $$, 0)
D
($$-$$ $$\infty $$, 0) $$ \times $$ R
JEE Main Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12