1
JEE Main 2021 (Online) 16th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let the functions f : R $$ \to $$ R and g : R $$ \to $$ R be defined as :

$$f(x) = \left\{ {\matrix{ {x + 2,} & {x < 0} \cr {{x^2},} & {x \ge 0} \cr } } \right.$$ and

$$g(x) = \left\{ {\matrix{ {{x^3},} & {x < 1} \cr {3x - 2,} & {x \ge 1} \cr } } \right.$$

Then, the number of points in R where (fog) (x) is NOT differentiable is equal to :
A
0
B
3
C
1
D
2
2
JEE Main 2021 (Online) 26th February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f(x) be a differentiable function at x = a with f'(a) = 2 and f(a) = 4.

Then $$\mathop {\lim }\limits_{x \to a} {{xf(a) - af(x)} \over {x - a}}$$ equals :
A
4 $$-$$ 2a
B
2a + 4
C
a + 4
D
2a $$-$$ 4
3
JEE Main 2021 (Online) 26th February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$f(x) = {\sin ^{ - 1}}x$$ and $$g(x) = {{{x^2} - x - 2} \over {2{x^2} - x - 6}}$$. If $$g(2) = \mathop {\lim }\limits_{x \to 2} g(x)$$, then the domain of the function fog is :
A
$$( - \infty , - 2] \cup \left[ { - {4 \over 3},\infty } \right)$$
B
$$( - \infty , - 2] \cup [ - 1,\infty )$$
C
$$( - \infty , - 2] \cup \left[ { - {3 \over 2},\infty } \right)$$
D
$$( - \infty , - 1] \cup [2,\infty )$$
4
JEE Main 2021 (Online) 26th February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f : R $$ \to $$ R be defined as

$$f(x) = \left\{ \matrix{ 2\sin \left( { - {{\pi x} \over 2}} \right),if\,x < - 1 \hfill \cr |a{x^2} + x + b|,\,if - 1 \le x \le 1 \hfill \cr \sin (\pi x),\,if\,x > 1 \hfill \cr} \right.$$ If f(x) is continuous on R, then a + b equals :
A
$$-$$3
B
3
C
$$-$$1
D
1
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12