1
JEE Main 2018 (Online) 15th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f(x) = $$\left\{ {\matrix{ {{{\left( {x - 1} \right)}^{{1 \over {2 - x}}}},} & {x > 1,x \ne 2} \cr {k\,\,\,\,\,\,\,\,\,\,\,\,\,\,} & {,x = 2} \cr } } \right.$$

Thevaue of k for which f s continuous at x = 2 is :
A
1
B
e
C
e-1
D
e-2
2
JEE Main 2018 (Online) 15th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
$$\mathop {\lim }\limits_{x \to 0} {{x\tan 2x - 2x\tan x} \over {{{\left( {1 - \cos 2x} \right)}^2}}}$$ equals :
A
$${1 \over 4}$$
B
1
C
$${1 \over 2}$$
D
$$-$$ $${1 \over 2}$$
3
JEE Main 2018 (Online) 15th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let S = {($$\lambda $$, $$\mu $$) $$ \in $$ R $$ \times $$ R : f(t) = (|$$\lambda $$| e|t| $$-$$ $$\mu $$). sin (2|t|), t $$ \in $$ R, is a differentiable function}. Then S is a subset of :
A
R $$ \times $$ [0, $$\infty $$)
B
[0, $$\infty $$) $$ \times $$ R
C
R $$ \times $$ ($$-$$ $$\infty $$, 0)
D
($$-$$ $$\infty $$, 0) $$ \times $$ R
4
JEE Main 2017 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of k for which the function

$$f\left( x \right) = \left\{ {\matrix{ {{{\left( {{4 \over 5}} \right)}^{{{\tan \,4x} \over {\tan \,5x}}}}\,\,,} & {0 < x < {\pi \over 2}} \cr {k + {2 \over 5}\,\,\,,} & {x = {\pi \over 2}} \cr } } \right.$$

is continuous at x = $${\pi \over 2},$$ is :
A
$${{17} \over {20}}$$
B
$${{2} \over {5}}$$
C
$${{3} \over {5}}$$
D
$$-$$ $${{2} \over {5}}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12