1
AIEEE 2004
+4
-1
Let $$A\left( {2, - 3} \right)$$ and $$B\left( {-2, 1} \right)$$ be vertices of a triangle $$ABC$$. If the centroid of this triangle moves on the line $$2x + 3y = 1$$, then the locus of the vertex $$C$$ is the line :
A
$$3x - 2y = 3$$
B
$$2x - 3y = 7$$
C
$$3x + 2y = 5$$
D
$$2x + 3y = 9$$
2
AIEEE 2004
+4
-1
Out of Syllabus
If the sum of the slopes of the lines given by $${x^2} - 2cxy - 7{y^2} = 0$$ is four times their product $$c$$ has the value :
A
$$-2$$
B
$$-1$$
C
$$2$$
D
$$1$$
3
AIEEE 2004
+4
-1
Out of Syllabus
If one of the lines given by $$6{x^2} - xy + 4c{y^2} = 0$$ is $$3x + 4y = 0,$$ then $$c$$ equals :
A
$$-3$$
B
$$-1$$
C
$$3$$
D
$$1$$
4
AIEEE 2003
+4
-1
A square of side a lies above the $$x$$-axis and has one vertex at the origin. The side passing through the origin makes an angle $$\alpha \left( {0 < \alpha < {\pi \over 4}} \right)$$ with the positive direction of x-axis. The equation of its diagonal not passing through the origin is :
A
$$y\left( {\cos \alpha + \sin \alpha } \right) + x\left( {\cos \alpha - \sin \alpha } \right) = a$$
B
$$y\left( {\cos \alpha - \sin \alpha } \right) - x\left( {\sin \alpha - \cos \alpha } \right) = a$$
C
$$y\left( {\cos \alpha + \sin \alpha } \right) + x\left( {\sin \alpha - \cos \alpha } \right) = a$$
D
$$y\left( {\cos \alpha + \sin \alpha } \right) + x\left( {\sin \alpha + \cos \alpha } \right) = a$$
EXAM MAP
Medical
NEET