The equations of the sides $$\mathrm{AB}, \mathrm{BC}$$ and CA of a triangle ABC are $$2 x+y=0, x+\mathrm{p} y=39$$ and $$x-y=3$$ respectively and $$\mathrm{P}(2,3)$$ is its circumcentre. Then which of the following is NOT true?
Let $$A(1,1), B(-4,3), C(-2,-5)$$ be vertices of a triangle $$A B C, P$$ be a point on side $$B C$$, and $$\Delta_{1}$$ and $$\Delta_{2}$$ be the areas of triangles $$A P B$$ and $$A B C$$, respectively. If $$\Delta_{1}: \Delta_{2}=4: 7$$, then the area enclosed by the lines $$A P, A C$$ and the $$x$$-axis is :
A point $$P$$ moves so that the sum of squares of its distances from the points $$(1,2)$$ and $$(-2,1)$$ is 14. Let $$f(x, y)=0$$ be the locus of $$\mathrm{P}$$, which intersects the $$x$$-axis at the points $$\mathrm{A}$$, $$\mathrm{B}$$ and the $$y$$-axis at the points C, D. Then the area of the quadrilateral ACBD is equal to :
Let the point $$P(\alpha, \beta)$$ be at a unit distance from each of the two lines $$L_{1}: 3 x-4 y+12=0$$, and $$L_{2}: 8 x+6 y+11=0$$. If $$P$$ lies below $$L_{1}$$ and above $${ }{L_{2}}$$, then $$100(\alpha+\beta)$$ is equal to :