NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

AIEEE 2011

MCQ (Single Correct Answer)
The lines $${L_1}:y - x = 0$$ and $${L_2}:2x + y = 0$$ intersect the line $${L_3}:y + 2 = 0$$ at $$P$$ and $$Q$$ respectively. The bisector of the acute angle between $${L_1}$$ and $${L_2}$$ intersects $${L_3}$$ at $$R$$.

Statement-1: The ratio $$PR$$ : $$RQ$$ equals $$2\sqrt 2 :\sqrt 5 $$
Statement-2: In any triangle, bisector of an angle divide the triangle into two similar triangles.

A
Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
B
Statement-1 is true, Statement-2 is false.
C
Statement-1 is false, Statement-2 is true.
D
Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.

Explanation



$${L_1}:y - x = 0$$

$${L_2}:2x + y = 0$$

$${L_3}:y + 2 = 0$$

On solving the equation of line $${L_1}$$ and $${L_2}$$ we get their point of

intersection $$(0, 0)$$ i.e., origin $$O.$$

On solving the equation of line $${L_1}$$ and $${L_3},$$

we get $$P=(-2, -2).$$

Similarly, we get $$Q = \left( { - 1, - 2} \right)$$

We know that bisector of an angle of a triangle, divide the opposite side the triangle in the ratio of the sides including the angle [ Angle Bisector Theorem of a Triangle ]

$$\therefore$$ $${{PR} \over {RQ}} = {{OP} \over {OQ}} = {{\sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2}} } \over {\sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }}$$

$$ = {{2\sqrt 2 } \over {\sqrt 5 }}$$
2

AIEEE 2010

MCQ (Single Correct Answer)
The line $$L$$ given by $${x \over 5} + {y \over b} = 1$$ passes through the point $$\left( {13,32} \right)$$. The line K is parrallel to $$L$$ and has the equation $${x \over c} + {y \over 3} = 1.$$ Then the distance between $$L$$ and $$K$$ is
A
$$\sqrt {17} $$
B
$${{17} \over {\sqrt {15} }}$$
C
$${{23} \over {\sqrt {17} }}$$
D
$${{23} \over {\sqrt {15} }}$$

Explanation

Slope of line $$L = - {b \over 5}$$

Slope of line $$K = - {3 \over c}$$

Line $$L$$ is parallel to line $$k.$$

$$ \Rightarrow {b \over 5} = {3 \over c} \Rightarrow bc = 15$$

$$(13,32)$$ is a point on $$L.$$

$$\therefore$$ $${{13} \over 5} + {{32} \over b} = 1 \Rightarrow {{32} \over b} = - {8 \over 5}$$

$$ \Rightarrow b = - 20 \Rightarrow c = - {3 \over 4}$$

Equation of $$K:$$ $$y - 4x = 3$$

$$\,\,\,\,\,\,\,\,\,\,\,$$ $$ \Rightarrow 4x - y + 3 = 0$$

Distance between $$L$$ and $$K$$

$$ = {{\left| {52 - 32 + 3} \right|} \over {\sqrt {17} }} = {{23} \over {\sqrt {17} }}$$
3

AIEEE 2009

MCQ (Single Correct Answer)
Three distinct points A, B and C are given in the 2 -dimensional coordinates plane such that the ratio of the distance of any one of them from the point $$(1, 0)$$ to the distance from the point $$(-1, 0)$$ is equal to $${1 \over 3}$$. Then the circumcentre of the triangle ABC is at the point:
A
$$\left( {{5 \over 4},0} \right)$$
B
$$\left( {{5 \over 2},0} \right)$$
C
$$\left( {{5 \over 3},0} \right)$$
D
$$\left( {0,0} \right)$$

Explanation

Given that

$$P\left( {1,0} \right),Q\left( { - 1,0} \right)$$

and $${{AP} \over {AQ}} = {{BP} \over {BQ}} = {{CP} \over {CQ}} = {1 \over 3}$$

$$ \Rightarrow 3AP = AQ$$

$$\,\,\,\,\,\,$$ Let $$A = (x,y)$$ then $$3AP = AQ \Rightarrow 9A{P^2} = A{Q^2}$$

$$ \Rightarrow 9{\left( {x - 1} \right)^2} + 9{y^2} = {\left( {x + 1} \right)^2} + y{}^2$$

$$ \Rightarrow 9{x^2} - 18x + 9 + 9{y^2} = {x^2} + 2x + 1 + {y^2}$$

$$ \Rightarrow 8{x^2} - 20x + 8{y^2} + 8 = 0$$

$$ \Rightarrow {x^2} + {y^2} - {5 \over 3}x + 1 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)$$

$$\therefore$$ A lies on the circle given by eq. $$(1).$$ As $$B$$ and $$C$$

also follow the same condition, - they must lie on the same circle.

$$\therefore$$ Center of circumcircle of $$\Delta ABC$$

$$=$$ Center of circle given by $$\left( 1 \right) = \left( {{5 \over 4},0} \right)$$
4

AIEEE 2009

MCQ (Single Correct Answer)
The lines $$p\left( {{p^2} + 1} \right)x - y + q = 0$$ and $$\left( {{p^2} + 1} \right){}^2x + \left( {{p^2} + 1} \right)y + 2q$$ $$=0$$ are perpendicular to a common line for :
A
exactly one values of $$p$$
B
exactly two values of $$p$$
C
more than two values of $$p$$
D
no value of $$p$$

Explanation

If the lines $$p\left( {{p^2} + 1} \right)x - y + q = 0$$

and $${\left( {{p^2} + 1} \right)^2}x + \left( {{p^2} + 1} \right)y + 2q = 0$$

are perpendicular to a common line then these lines -

must be parallel to each other,

$$\therefore$$ $${m_1} = {m_2} \Rightarrow - {{p\left( {{p^2} + 1} \right)} \over { - 1}} = - {{{{\left( {{p^2} + 1} \right)}^2}} \over {{p^2} + 1}}$$

$$ \Rightarrow \left( {{p^2} + 1} \right)\left( {p + 1} \right) = 0$$

$$ \Rightarrow p = - 1$$

$$\therefore$$ $$p$$ can have exactly one value.

Questions Asked from Straight Lines and Pair of Straight Lines

On those following papers in MCQ (Single Correct Answer)
Number in Brackets after Paper Indicates No. of Questions
JEE Main 2021 (Online) 31st August Evening Shift (1)
JEE Main 2021 (Online) 31st August Morning Shift (1)
JEE Main 2021 (Online) 27th August Evening Shift (1)
JEE Main 2021 (Online) 27th August Morning Shift (1)
JEE Main 2021 (Online) 26th August Morning Shift (1)
JEE Main 2021 (Online) 27th July Evening Shift (2)
JEE Main 2021 (Online) 25th July Evening Shift (1)
JEE Main 2021 (Online) 18th March Evening Shift (1)
JEE Main 2021 (Online) 18th March Morning Shift (2)
JEE Main 2021 (Online) 17th March Morning Shift (1)
JEE Main 2021 (Online) 16th March Evening Shift (1)
JEE Main 2021 (Online) 26th February Morning Shift (1)
JEE Main 2021 (Online) 25th February Morning Shift (1)
JEE Main 2021 (Online) 24th February Morning Shift (1)
JEE Main 2020 (Online) 6th September Morning Slot (1)
JEE Main 2020 (Online) 4th September Evening Slot (1)
JEE Main 2020 (Online) 4th September Morning Slot (1)
JEE Main 2020 (Online) 3rd September Evening Slot (1)
JEE Main 2020 (Online) 2nd September Evening Slot (1)
JEE Main 2020 (Online) 9th January Morning Slot (1)
JEE Main 2020 (Online) 8th January Morning Slot (1)
JEE Main 2020 (Online) 7th January Evening Slot (1)
JEE Main 2019 (Online) 12th April Evening Slot (1)
JEE Main 2019 (Online) 10th April Evening Slot (1)
JEE Main 2019 (Online) 10th April Morning Slot (1)
JEE Main 2019 (Online) 9th April Evening Slot (1)
JEE Main 2019 (Online) 9th April Morning Slot (1)
JEE Main 2019 (Online) 8th April Evening Slot (2)
JEE Main 2019 (Online) 8th April Morning Slot (2)
JEE Main 2019 (Online) 12th January Evening Slot (1)
JEE Main 2019 (Online) 12th January Morning Slot (1)
JEE Main 2019 (Online) 11th January Evening Slot (1)
JEE Main 2019 (Online) 10th January Evening Slot (2)
JEE Main 2019 (Online) 10th January Morning Slot (3)
JEE Main 2019 (Online) 9th January Evening Slot (1)
JEE Main 2019 (Online) 9th January Morning Slot (1)
JEE Main 2018 (Offline) (1)
JEE Main 2018 (Online) 15th April Evening Slot (2)
JEE Main 2018 (Online) 15th April Morning Slot (1)
JEE Main 2017 (Online) 9th April Morning Slot (1)
JEE Main 2017 (Offline) (1)
JEE Main 2016 (Online) 10th April Morning Slot (2)
JEE Main 2016 (Online) 9th April Morning Slot (2)
JEE Main 2016 (Offline) (1)
JEE Main 2015 (Offline) (1)
JEE Main 2014 (Offline) (2)
JEE Main 2013 (Offline) (2)
AIEEE 2012 (1)
AIEEE 2011 (1)
AIEEE 2010 (1)
AIEEE 2009 (3)
AIEEE 2008 (1)
AIEEE 2007 (3)
AIEEE 2006 (2)
AIEEE 2005 (2)
AIEEE 2004 (4)
AIEEE 2003 (5)
AIEEE 2002 (4)

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12