1
AIEEE 2009
+4
-1
The shortest distance between the line $$y - x = 1$$ and the curve $$x = {y^2}$$ is :
A
$${{2\sqrt 3 } \over 8}$$
B
$${{3\sqrt 2 } \over 5}$$
C
$${{\sqrt 3 } \over 4}$$
D
$${{3\sqrt 2 } \over 8}$$
2
AIEEE 2009
+4
-1
The lines $$p\left( {{p^2} + 1} \right)x - y + q = 0$$ and $$\left( {{p^2} + 1} \right){}^2x + \left( {{p^2} + 1} \right)y + 2q$$ $$=0$$ are perpendicular to a common line for :
A
exactly one values of $$p$$
B
exactly two values of $$p$$
C
more than two values of $$p$$
D
no value of $$p$$
3
AIEEE 2008
+4
-1
The perpendicular bisector of the line segment joining P(1, 4) and Q(k, 3) has y-intercept -4. Then a possible value of k is :
A
1
B
2
C
-2
D
-4
4
AIEEE 2007
+4
-1
Out of Syllabus
Let $$P = \left( { - 1,0} \right),\,Q = \left( {0,0} \right)$$ and $$R = \left( {3,3\sqrt 3 } \right)$$ be three point. The equation of the bisector of the angle $$PQR$$ is :
A
$${{\sqrt 3 } \over 2}x + y = 0$$
B
$$x + \sqrt {3y} = 0$$
C
$$\sqrt 3 x + y = 0$$
D
$$x + {{\sqrt 3 } \over 2}y = 0$$
EXAM MAP
Medical
NEET