Let $$P = \left( { - 1,0} \right),\,Q = \left( {0,0} \right)$$ and $$R = \left( {3,3\sqrt 3 } \right)$$ be three point. The equation of the bisector of the angle $$PQR$$ is
A
$${{\sqrt 3 } \over 2}x + y = 0$$
B
$$x + \sqrt {3y} = 0$$
C
$$\sqrt 3 x + y = 0$$
D
$$x + {{\sqrt 3 } \over 2}y = 0$$
Explanation
Given : The coordinates of points $$P,Q,R$$ are $$(-1,0),$$