Let the points $\left(\frac{11}{2}, \alpha\right)$ lie on or inside the triangle with sides $x+y=11, x+2 y=16$ and $2 x+3 y=29$. Then the product of the smallest and the largest values of $\alpha$ is equal to :
Let the lines $3 x-4 y-\alpha=0,8 x-11 y-33=0$, and $2 x-3 y+\lambda=0$ be concurrent. If the image of the point $(1,2)$ in the line $2 x-3 y+\lambda=0$ is $\left(\frac{57}{13}, \frac{-40}{13}\right)$, then $|\alpha \lambda|$ is equal to
A rod of length eight units moves such that its ends $A$ and $B$ always lie on the lines $x-y+2=0$ and $y+2=0$, respectively. If the locus of the point $P$, that divides the rod $A B$ internally in the ratio $2: 1$ is $9\left(x^2+\alpha y^2+\beta x y+\gamma x+28 y\right)-76=0$, then $\alpha-\beta-\gamma$ is equal to :
Let the triangle PQR be the image of the triangle with vertices $(1,3),(3,1)$ and $(2,4)$ in the line $x+2 y=2$. If the centroid of $\triangle \mathrm{PQR}$ is the point $(\alpha, \beta)$, then $15(\alpha-\beta)$ is equal to :