1
JEE Main 2023 (Online) 29th January Morning Shift
+4
-1

Let $$B$$ and $$C$$ be the two points on the line $$y+x=0$$ such that $$B$$ and $$C$$ are symmetric with respect to the origin. Suppose $$A$$ is a point on $$y-2 x=2$$ such that $$\triangle A B C$$ is an equilateral triangle. Then, the area of the $$\triangle A B C$$ is

A
$$\frac{10}{\sqrt{3}}$$
B
$$2 \sqrt{3}$$
C
$$3 \sqrt{3}$$
D
$$\frac{8}{\sqrt{3}}$$
2
JEE Main 2023 (Online) 29th January Morning Shift
+4
-1

A light ray emits from the origin making an angle 30$$^\circ$$ with the positive $$x$$-axis. After getting reflected by the line $$x+y=1$$, if this ray intersects $$x$$-axis at Q, then the abscissa of Q is

A
$${2 \over {\left( {\sqrt 3 - 1} \right)}}$$
B
$${2 \over {3 - \sqrt 3 }}$$
C
$${{\sqrt 3 } \over {2\left( {\sqrt 3 + 1} \right)}}$$
D
$${2 \over {3 + \sqrt 3 }}$$
3
JEE Main 2022 (Online) 29th July Evening Shift
+4
-1 Let $$m_{1}, m_{2}$$ be the slopes of two adjacent sides of a square of side a such that $$a^{2}+11 a+3\left(m_{1}^{2}+m_{2}^{2}\right)=220$$. If one vertex of the square is $$(10(\cos \alpha-\sin \alpha), 10(\sin \alpha+\cos \alpha))$$, where $$\alpha \in\left(0, \frac{\pi}{2}\right)$$ and the equation of one diagonal is $$(\cos \alpha-\sin \alpha) x+(\sin \alpha+\cos \alpha) y=10$$, then $$72\left(\sin ^{4} \alpha+\cos ^{4} \alpha\right)+a^{2}-3 a+13$$ is equal to :

A
119
B
128
C
145
D
155
4
JEE Main 2022 (Online) 29th July Evening Shift
+4
-1 Let $$\mathrm{A}(\alpha,-2), \mathrm{B}(\alpha, 6)$$ and $$\mathrm{C}\left(\frac{\alpha}{4},-2\right)$$ be vertices of a $$\triangle \mathrm{ABC}$$. If $$\left(5, \frac{\alpha}{4}\right)$$ is the circumcentre of $$\triangle \mathrm{ABC}$$, then which of the following is NOT correct about $$\triangle \mathrm{ABC}$$ ?

A
area is 24
B
perimeter is 25
C
D
JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination